Matches in SemOpenAlex for { <https://semopenalex.org/work/W1497121464> ?p ?o ?g. }
- W1497121464 endingPage "25" @default.
- W1497121464 startingPage "1" @default.
- W1497121464 abstract "Os and other highly siderophile elements in mantle‐derived peridotites are strongly concentrated into trace amounts of sulfide minerals. We have used a laser‐ablation microprobe coupled to a multicollector ICPMS (LAM‐MC‐ICPMS) to determine the Os isotope composition, Re/Os and Pt/Os of 92 sulfide inclusions in olivine macrocrysts, derived from mantle peridotites, from the Udachnaya kimberlite in the Siberian craton. 26 of these have also been analyzed for Platinum Group Elements and other trace elements by LAM‐ICPMS. The sulfides are mixtures of Ni‐rich and Fe‐rich monosulfide solid solutions (MSS), pentlandite and chalcopyrite, exsolved from MSS bulk compositions. They can be divided into five populations (1, 2, 3A–3C) on the basis of Os content, Os/Pt and Re/Os. The genetic relationships of these groups can be constrained by comparison with published experimental data on element partitioning between MSS and sulfide melts. Group 1 sulfides can be modeled as the MSS residual after low degrees of melting of a primitive mantle source, under sulfur‐saturated conditions. Group 2 sulfides are best modeled as mixtures of MSS and alloy phases, formed at low degrees of melting under sulfur‐undersaturated conditions; many contain Pt‐rich micronuggets. Group 3C sulfides can be modeled as sulfide liquids, or as MSS crystallized from very evolved sulfide liquids. Sulfides of Groups 3A and 3B are interpreted as the products of reaction between MSS of Groups 1 and 2, and liquids of Group 3C. Inclusions of different groups may occur within single olivine grains, suggesting repeated introduction of sulfide melts, followed by annealing and grain growth. Sulfides of Groups 1 and 2, and some 3A sulfides, give Os model ages (T MA ) that are geologically reasonable (0–4 Ga). Most Group 3 sulfides contain unsupported 187 Os, implying a two‐stage history. A negative correlation between T MA and Re/Os is consistent with mixing between residual MSS of Groups 1 and 2, and liquids (3C) derived from a source with a high Re/Os, such as the ca 3.0 Ga eclogites described from Udachnnaya [ Pearson et al. , 1995c ]. Our modeling suggests that sulfides with 187 Re/ 188 Os < 0.07 are unlikely to have been disturbed. Fifty‐two grains satisfy this criterion; 45 of these give T MA ages between 2.5 and 3.6 Ga, and 35 are >2.8 Ga. The data suggest that most of the lithospheric mantle beneath the Daldyn kimberlite field formed during the period 3–3.5 Ga, and that lithosphere formation culminated in a major event at ca 2.9 Ga, which may have involved remelting of older eclogites. There is little evidence in the Re‐Os data for significant additions to the lithosphere after this time. In situ Re‐Os analysis of single sulfide inclusions removes some of the ambiguity involved in the analysis of whole rock peridotite samples (or even separated olivine grains), where several generations of sulfides may be present. In situ analysis, combined with careful petrographic and chemical study of the sulfide populations, thus can provide more precise temporal constraints on the evolution of lithospheric mantle." @default.
- W1497121464 created "2016-06-24" @default.
- W1497121464 creator A5013527156 @default.
- W1497121464 creator A5040292900 @default.
- W1497121464 creator A5047793322 @default.
- W1497121464 creator A5056410545 @default.
- W1497121464 date "2002-11-01" @default.
- W1497121464 modified "2023-10-18" @default.
- W1497121464 title "In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle" @default.
- W1497121464 cites W1424372256 @default.
- W1497121464 cites W1509335520 @default.
- W1497121464 cites W1659288539 @default.
- W1497121464 cites W1970527462 @default.
- W1497121464 cites W1974569679 @default.
- W1497121464 cites W1990851049 @default.
- W1497121464 cites W2002768804 @default.
- W1497121464 cites W2005795087 @default.
- W1497121464 cites W2014406426 @default.
- W1497121464 cites W2031296873 @default.
- W1497121464 cites W2034688166 @default.
- W1497121464 cites W2043728112 @default.
- W1497121464 cites W2045069993 @default.
- W1497121464 cites W2056207362 @default.
- W1497121464 cites W2056836075 @default.
- W1497121464 cites W2064306021 @default.
- W1497121464 cites W2081475067 @default.
- W1497121464 cites W2086212718 @default.
- W1497121464 cites W2108727836 @default.
- W1497121464 cites W2114949821 @default.
- W1497121464 cites W2122594547 @default.
- W1497121464 cites W2136656291 @default.
- W1497121464 cites W2139661544 @default.
- W1497121464 cites W2166632770 @default.
- W1497121464 cites W2168246340 @default.
- W1497121464 cites W2579656065 @default.
- W1497121464 doi "https://doi.org/10.1029/2001gc000287" @default.
- W1497121464 hasPublicationYear "2002" @default.
- W1497121464 type Work @default.
- W1497121464 sameAs 1497121464 @default.
- W1497121464 citedByCount "100" @default.
- W1497121464 countsByYear W14971214642012 @default.
- W1497121464 countsByYear W14971214642013 @default.
- W1497121464 countsByYear W14971214642014 @default.
- W1497121464 countsByYear W14971214642015 @default.
- W1497121464 countsByYear W14971214642016 @default.
- W1497121464 countsByYear W14971214642017 @default.
- W1497121464 countsByYear W14971214642018 @default.
- W1497121464 countsByYear W14971214642019 @default.
- W1497121464 countsByYear W14971214642020 @default.
- W1497121464 countsByYear W14971214642021 @default.
- W1497121464 countsByYear W14971214642022 @default.
- W1497121464 countsByYear W14971214642023 @default.
- W1497121464 crossrefType "journal-article" @default.
- W1497121464 hasAuthorship W1497121464A5013527156 @default.
- W1497121464 hasAuthorship W1497121464A5040292900 @default.
- W1497121464 hasAuthorship W1497121464A5047793322 @default.
- W1497121464 hasAuthorship W1497121464A5056410545 @default.
- W1497121464 hasBestOaLocation W14971214641 @default.
- W1497121464 hasConcept C127313418 @default.
- W1497121464 hasConcept C147717901 @default.
- W1497121464 hasConcept C151730666 @default.
- W1497121464 hasConcept C161790260 @default.
- W1497121464 hasConcept C17409809 @default.
- W1497121464 hasConcept C183282558 @default.
- W1497121464 hasConcept C185592680 @default.
- W1497121464 hasConcept C191897082 @default.
- W1497121464 hasConcept C192562407 @default.
- W1497121464 hasConcept C199289684 @default.
- W1497121464 hasConcept C2776062231 @default.
- W1497121464 hasConcept C2777163820 @default.
- W1497121464 hasConcept C2778188036 @default.
- W1497121464 hasConcept C2778965357 @default.
- W1497121464 hasConcept C2778981965 @default.
- W1497121464 hasConcept C2779417233 @default.
- W1497121464 hasConcept C2780364934 @default.
- W1497121464 hasConcept C2780596425 @default.
- W1497121464 hasConcept C2781251403 @default.
- W1497121464 hasConcept C34682378 @default.
- W1497121464 hasConcept C518104683 @default.
- W1497121464 hasConcept C544778455 @default.
- W1497121464 hasConcept C55493867 @default.
- W1497121464 hasConcept C67236022 @default.
- W1497121464 hasConcept C77928131 @default.
- W1497121464 hasConcept C79572550 @default.
- W1497121464 hasConcept C84372278 @default.
- W1497121464 hasConceptScore W1497121464C127313418 @default.
- W1497121464 hasConceptScore W1497121464C147717901 @default.
- W1497121464 hasConceptScore W1497121464C151730666 @default.
- W1497121464 hasConceptScore W1497121464C161790260 @default.
- W1497121464 hasConceptScore W1497121464C17409809 @default.
- W1497121464 hasConceptScore W1497121464C183282558 @default.
- W1497121464 hasConceptScore W1497121464C185592680 @default.
- W1497121464 hasConceptScore W1497121464C191897082 @default.
- W1497121464 hasConceptScore W1497121464C192562407 @default.
- W1497121464 hasConceptScore W1497121464C199289684 @default.
- W1497121464 hasConceptScore W1497121464C2776062231 @default.
- W1497121464 hasConceptScore W1497121464C2777163820 @default.
- W1497121464 hasConceptScore W1497121464C2778188036 @default.