Matches in SemOpenAlex for { <https://semopenalex.org/work/W1497131161> ?p ?o ?g. }
- W1497131161 abstract "The identification of genes is an ongoing research issue in the biomedical and bioinformatics community. The Human Genome Project which was completed in 2003, identified approximately 20,000+ genes in the human DNA, but there are still many of these genes for which their function or role is unknown, and this accounts only for healthy DNA. Genetic diseases like Cancer, Alzheimer, Hemophilia and others, have mechanisms that we currently just started to understand. For instance, genes BRCA1 and BRCA2, famous for their role in breast cancer (Friedman et al., 1994), only account for 5% of the incidence of the aforementioned cancer (Oldenburg et al., 2007). Many questions rise: What are the rest of the mechanisms involved in this cancer type? Are there other genes involved? How? This only accounts for one type of cancer, and there are at least 177 different types according to the National Cancer Institute 1. The straightforward method to deal with this problem is to do wet lab experiments with large samples of normal and disease tissue, to test under different conditions the reactions, and check the expression or lack of it in different genes. The complication with this method is the cost, it takes time, it requires specialized equipment, and thus the economic price tag is high. Fortunately the bioinformatics area has acquired maturity during the recent years, biological data is becoming available in different formats throughout different databases and publications are providing new insights. Thanks to these, computational methods can be developed, methods that would save time, effort and money, methods that could help biomedical researchers get clues on which genes to explore on the wet laboratory, so that time is not wasted on genes that are unlikely to contribute in a given disease. Gene Prioritization methods can be used to find genes that were previously unknown to be related to a given disease. The general definition of gene prioritization is: Given a disease D, a candidate gene set C, and the training data T, then input all these data to the method and it will compute a score for each of the candidate genes, higher scoring genes are supposed to be the genes that are most likely related to disease D, see fig. 1. Methods can be classified according to the type of input data that the method uses, as Text and Data MiningMethods and Network Based Methods. Text and Data Mining methods use training data like genetic localisation, gene expression, phenotypic data (van Driel et al., 2003), PubMeb abstracts (Tiffin et al., 2005), spatial gene expression profiles, linkage analysis (Piro et al., 2010), gene ontology and others (Adie et al., 2005; Ashburner et al., 2000; Schlicker et al., 2010); as the name suggests this" @default.
- W1497131161 created "2016-06-24" @default.
- W1497131161 creator A5010205191 @default.
- W1497131161 creator A5048127662 @default.
- W1497131161 creator A5080558475 @default.
- W1497131161 date "2011-10-19" @default.
- W1497131161 modified "2023-10-02" @default.
- W1497131161 title "Disease Gene Prioritization" @default.
- W1497131161 cites W1502617758 @default.
- W1497131161 cites W1532850889 @default.
- W1497131161 cites W1539401343 @default.
- W1497131161 cites W1550543890 @default.
- W1497131161 cites W1552716293 @default.
- W1497131161 cites W1568473891 @default.
- W1497131161 cites W1569243453 @default.
- W1497131161 cites W1574156092 @default.
- W1497131161 cites W1605637875 @default.
- W1497131161 cites W1865136974 @default.
- W1497131161 cites W1926851645 @default.
- W1497131161 cites W1969779540 @default.
- W1497131161 cites W1973088446 @default.
- W1497131161 cites W1974155558 @default.
- W1497131161 cites W1974256272 @default.
- W1497131161 cites W1979076392 @default.
- W1497131161 cites W1980740976 @default.
- W1497131161 cites W1983932608 @default.
- W1497131161 cites W1985849948 @default.
- W1497131161 cites W1986193545 @default.
- W1497131161 cites W1986544564 @default.
- W1497131161 cites W1988068514 @default.
- W1497131161 cites W1988185025 @default.
- W1497131161 cites W1989773675 @default.
- W1497131161 cites W1990520168 @default.
- W1497131161 cites W1997606084 @default.
- W1497131161 cites W1998923213 @default.
- W1497131161 cites W1999895438 @default.
- W1497131161 cites W2001803406 @default.
- W1497131161 cites W2003144438 @default.
- W1497131161 cites W2003479128 @default.
- W1497131161 cites W2003516452 @default.
- W1497131161 cites W2005546833 @default.
- W1497131161 cites W2006770045 @default.
- W1497131161 cites W2007214349 @default.
- W1497131161 cites W2008620264 @default.
- W1497131161 cites W2008856488 @default.
- W1497131161 cites W2010142606 @default.
- W1497131161 cites W2010798628 @default.
- W1497131161 cites W2017274683 @default.
- W1497131161 cites W2020541351 @default.
- W1497131161 cites W2022589976 @default.
- W1497131161 cites W2024858956 @default.
- W1497131161 cites W2027816595 @default.
- W1497131161 cites W2031628470 @default.
- W1497131161 cites W2031950862 @default.
- W1497131161 cites W2032755318 @default.
- W1497131161 cites W2034660710 @default.
- W1497131161 cites W2037446998 @default.
- W1497131161 cites W2038122249 @default.
- W1497131161 cites W2040223842 @default.
- W1497131161 cites W204159428 @default.
- W1497131161 cites W2046508931 @default.
- W1497131161 cites W2048024098 @default.
- W1497131161 cites W2048296798 @default.
- W1497131161 cites W2048524642 @default.
- W1497131161 cites W2052388304 @default.
- W1497131161 cites W2054108659 @default.
- W1497131161 cites W2056944867 @default.
- W1497131161 cites W2057029228 @default.
- W1497131161 cites W2057387739 @default.
- W1497131161 cites W2057695174 @default.
- W1497131161 cites W2059145105 @default.
- W1497131161 cites W2059682917 @default.
- W1497131161 cites W2066325577 @default.
- W1497131161 cites W2067620347 @default.
- W1497131161 cites W2068713279 @default.
- W1497131161 cites W2070120800 @default.
- W1497131161 cites W2070412833 @default.
- W1497131161 cites W2070448217 @default.
- W1497131161 cites W2072765451 @default.
- W1497131161 cites W2073353074 @default.
- W1497131161 cites W2074395112 @default.
- W1497131161 cites W2080083594 @default.
- W1497131161 cites W2085277871 @default.
- W1497131161 cites W2087924857 @default.
- W1497131161 cites W2089819802 @default.
- W1497131161 cites W2094678200 @default.
- W1497131161 cites W2095776265 @default.
- W1497131161 cites W2096410350 @default.
- W1497131161 cites W2096863518 @default.
- W1497131161 cites W2099564671 @default.
- W1497131161 cites W2099589970 @default.
- W1497131161 cites W2100251770 @default.
- W1497131161 cites W2103017472 @default.
- W1497131161 cites W2104570606 @default.
- W1497131161 cites W2107263774 @default.
- W1497131161 cites W2107580398 @default.
- W1497131161 cites W2108514550 @default.
- W1497131161 cites W2109372707 @default.
- W1497131161 cites W2109555487 @default.
- W1497131161 cites W2109763816 @default.