Matches in SemOpenAlex for { <https://semopenalex.org/work/W1497267131> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1497267131 endingPage "85" @default.
- W1497267131 startingPage "57" @default.
- W1497267131 abstract "In case of isotropic material symmetry, the elastic-viscoelastic correspondence principle is well established to provide the solution of linear viscoelasticity from the coupled fictitious elastic problem by use of the inverse Laplace transformation (Alfrey–Hoff’s analogy). Aim of this chapter is to show useful enhancement of the Alfrey–Hoff’s analogy to a broader class of material anisotropy for which separation of the volumetric and the shape change effects from total viscoelastic deformation does not occur. Such extension requires use of the vector–matrix notation to description of the general constitutive response of anisotropic linear viscoelastic material (see Pobiedria Izd. Mosk. Univ., (1984) [10]). When implemented to the composite materials which exhibit linear viscoelastic response, the classically used homogenization techniques for averaged elastic matrix, can be implemented to viscoelastic work-regime for associated fictitious elastic Representative Unit Cell of composite material. Next, subsequent application of the inverse Laplace transformation (cf. Haasemann and Ulbricht Technische Mechanik, 30(1–3), 122–135 (2010)) is applied. In a similar fashion, the well-established upper and lower bounds for effective elastic matrices can also be extended to anisotropic linear viscoelastic composite materials. The Laplace transformation is also a convenient tool for creep analysis of anisotropic composites that requires, however, limitation to the narrower class of linear viscoelastic materials. In the space of transformed variable $$s$$ , instead of time space $$t$$ , the classical homogenization rules for fictitious elastic composite materials can be applied. For the above reasons in what follows, we shall confine ourselves to the linear viscoelastic materials, isotropic, or anisotropic." @default.
- W1497267131 created "2016-06-24" @default.
- W1497267131 creator A5069418031 @default.
- W1497267131 creator A5083643435 @default.
- W1497267131 date "2015-01-01" @default.
- W1497267131 modified "2023-10-12" @default.
- W1497267131 title "Constitutive Equations for Isotropic and Anisotropic Linear Viscoelastic Materials" @default.
- W1497267131 cites W137592525 @default.
- W1497267131 cites W1503721880 @default.
- W1497267131 cites W2339125670 @default.
- W1497267131 cites W2505007785 @default.
- W1497267131 cites W2505515853 @default.
- W1497267131 cites W55036881 @default.
- W1497267131 cites W87349108 @default.
- W1497267131 doi "https://doi.org/10.1007/978-3-319-17160-9_2" @default.
- W1497267131 hasPublicationYear "2015" @default.
- W1497267131 type Work @default.
- W1497267131 sameAs 1497267131 @default.
- W1497267131 citedByCount "7" @default.
- W1497267131 countsByYear W14972671312018 @default.
- W1497267131 countsByYear W14972671312019 @default.
- W1497267131 countsByYear W14972671312020 @default.
- W1497267131 countsByYear W14972671312021 @default.
- W1497267131 crossrefType "book-chapter" @default.
- W1497267131 hasAuthorship W1497267131A5069418031 @default.
- W1497267131 hasAuthorship W1497267131A5083643435 @default.
- W1497267131 hasConcept C120665830 @default.
- W1497267131 hasConcept C121332964 @default.
- W1497267131 hasConcept C130217890 @default.
- W1497267131 hasConcept C134306372 @default.
- W1497267131 hasConcept C135628077 @default.
- W1497267131 hasConcept C154761356 @default.
- W1497267131 hasConcept C159985019 @default.
- W1497267131 hasConcept C162324750 @default.
- W1497267131 hasConcept C184050105 @default.
- W1497267131 hasConcept C186541917 @default.
- W1497267131 hasConcept C18903297 @default.
- W1497267131 hasConcept C192562407 @default.
- W1497267131 hasConcept C202973686 @default.
- W1497267131 hasConcept C2778722038 @default.
- W1497267131 hasConcept C33923547 @default.
- W1497267131 hasConcept C34447519 @default.
- W1497267131 hasConcept C74650414 @default.
- W1497267131 hasConcept C85725439 @default.
- W1497267131 hasConcept C86803240 @default.
- W1497267131 hasConcept C97355855 @default.
- W1497267131 hasConcept C97937538 @default.
- W1497267131 hasConceptScore W1497267131C120665830 @default.
- W1497267131 hasConceptScore W1497267131C121332964 @default.
- W1497267131 hasConceptScore W1497267131C130217890 @default.
- W1497267131 hasConceptScore W1497267131C134306372 @default.
- W1497267131 hasConceptScore W1497267131C135628077 @default.
- W1497267131 hasConceptScore W1497267131C154761356 @default.
- W1497267131 hasConceptScore W1497267131C159985019 @default.
- W1497267131 hasConceptScore W1497267131C162324750 @default.
- W1497267131 hasConceptScore W1497267131C184050105 @default.
- W1497267131 hasConceptScore W1497267131C186541917 @default.
- W1497267131 hasConceptScore W1497267131C18903297 @default.
- W1497267131 hasConceptScore W1497267131C192562407 @default.
- W1497267131 hasConceptScore W1497267131C202973686 @default.
- W1497267131 hasConceptScore W1497267131C2778722038 @default.
- W1497267131 hasConceptScore W1497267131C33923547 @default.
- W1497267131 hasConceptScore W1497267131C34447519 @default.
- W1497267131 hasConceptScore W1497267131C74650414 @default.
- W1497267131 hasConceptScore W1497267131C85725439 @default.
- W1497267131 hasConceptScore W1497267131C86803240 @default.
- W1497267131 hasConceptScore W1497267131C97355855 @default.
- W1497267131 hasConceptScore W1497267131C97937538 @default.
- W1497267131 hasLocation W14972671311 @default.
- W1497267131 hasOpenAccess W1497267131 @default.
- W1497267131 hasPrimaryLocation W14972671311 @default.
- W1497267131 hasRelatedWork W1992938843 @default.
- W1497267131 hasRelatedWork W2035642570 @default.
- W1497267131 hasRelatedWork W2073573447 @default.
- W1497267131 hasRelatedWork W2155194504 @default.
- W1497267131 hasRelatedWork W2370944427 @default.
- W1497267131 hasRelatedWork W2377770107 @default.
- W1497267131 hasRelatedWork W2379840412 @default.
- W1497267131 hasRelatedWork W2527690563 @default.
- W1497267131 hasRelatedWork W2804884043 @default.
- W1497267131 hasRelatedWork W76304287 @default.
- W1497267131 isParatext "false" @default.
- W1497267131 isRetracted "false" @default.
- W1497267131 magId "1497267131" @default.
- W1497267131 workType "book-chapter" @default.