Matches in SemOpenAlex for { <https://semopenalex.org/work/W1497486022> ?p ?o ?g. }
- W1497486022 abstract "Production scheduling is the process of allocating the resources and then sequencing of task to produce goods. Allocation and sequencing decision are closely related and it is very difficult to model mathematical interaction between them. The allocation problem is solved first and its results are supplied as inputs to the sequencing problem. High quality scheduling improves the delivery performance and lowers the inventory cost. They have much importance in this time based competition. This can be achieved when the scheduling is done in acceptable computation time, but it is difficult because of the NP-hard nature and large size of the scheduling problem. Based on the machine environment, sequence of operations for the jobs, etc. , the production scheduling problem is divided into the different types: one stage, one process or single machine; one stage, multiple processor or parallel machine; flow shop, job shop, open shop; static and dynamic etc. Job shop is a complex shop where there are finite number of machines, jobs and operation to be done on jobs. There is no direction of flow for jobs. The scheduling is done based on the selection of machine k to process an operation i on job j. Each job can be processed on a machine any number of times. Flexible job-shop scheduling problem (FJSP) extends the JSP by allowing each operations to be processed on more than machine. With this extension, we are now confronted with two subtask: assignment of each operation to an appropriate machine and sequencing operations on each machine. In the literature, different approaches (tabu search, simulated annealing, variable neighborhood, particle swarm optimization, clonal selection principle etc.) have been proposed to solve this problem (Fattahi,et al., 2007; Kacem, et al., 2002; Liu, et al., 2006; Ong, et. al., 2005; Preissl, 2006; Shi-Jin, et al., 2008; Tay, et al., 2008; Yazdani, et al., 2009). The genetic algorithms (GA), genetic programming, evolution strategies, and evolutionary programming for scheduling problem are described in (Affenzeller, et. al., 2004; Back, et al., 1997; Beham, et al., 2008; Koza, 1992; Mitchell, et. al., 2005; Zomaya, et. al., 2005; Stocher, et. al., 2007; Winkler, et. al., 2009), and cellular automata are presented in (De Castro, 2006; Tomassini, 2000; Seredynski, 2002). Using GA algorithm to behavior in cellular automata (CA), evolutionary design of rule changing CA, and other problems are described in (Back," @default.
- W1497486022 created "2016-06-24" @default.
- W1497486022 creator A5014450854 @default.
- W1497486022 creator A5034832373 @default.
- W1497486022 creator A5060480228 @default.
- W1497486022 creator A5062970395 @default.
- W1497486022 date "2011-04-11" @default.
- W1497486022 modified "2023-09-26" @default.
- W1497486022 title "Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem" @default.
- W1497486022 cites W1481272997 @default.
- W1497486022 cites W1488964931 @default.
- W1497486022 cites W150431090 @default.
- W1497486022 cites W1550328608 @default.
- W1497486022 cites W1569140503 @default.
- W1497486022 cites W1606344681 @default.
- W1497486022 cites W1969109994 @default.
- W1497486022 cites W1994275013 @default.
- W1497486022 cites W2073870328 @default.
- W1497486022 cites W2089276800 @default.
- W1497486022 cites W2091642568 @default.
- W1497486022 cites W2098528655 @default.
- W1497486022 cites W2098958141 @default.
- W1497486022 cites W2102142523 @default.
- W1497486022 cites W2121719389 @default.
- W1497486022 cites W2122005844 @default.
- W1497486022 cites W2122127302 @default.
- W1497486022 cites W2123921856 @default.
- W1497486022 cites W2134195081 @default.
- W1497486022 cites W2154986159 @default.
- W1497486022 cites W2166900052 @default.
- W1497486022 cites W3023308187 @default.
- W1497486022 cites W3146483931 @default.
- W1497486022 cites W2466298258 @default.
- W1497486022 cites W66521670 @default.
- W1497486022 doi "https://doi.org/10.5772/16010" @default.
- W1497486022 hasPublicationYear "2011" @default.
- W1497486022 type Work @default.
- W1497486022 sameAs 1497486022 @default.
- W1497486022 citedByCount "1" @default.
- W1497486022 countsByYear W14974860222016 @default.
- W1497486022 crossrefType "book-chapter" @default.
- W1497486022 hasAuthorship W1497486022A5014450854 @default.
- W1497486022 hasAuthorship W1497486022A5034832373 @default.
- W1497486022 hasAuthorship W1497486022A5060480228 @default.
- W1497486022 hasAuthorship W1497486022A5062970395 @default.
- W1497486022 hasBestOaLocation W14974860221 @default.
- W1497486022 hasConcept C107568181 @default.
- W1497486022 hasConcept C111919701 @default.
- W1497486022 hasConcept C119948110 @default.
- W1497486022 hasConcept C120314980 @default.
- W1497486022 hasConcept C126255220 @default.
- W1497486022 hasConcept C127413603 @default.
- W1497486022 hasConcept C127456818 @default.
- W1497486022 hasConcept C13736549 @default.
- W1497486022 hasConcept C158336966 @default.
- W1497486022 hasConcept C206729178 @default.
- W1497486022 hasConcept C2777243215 @default.
- W1497486022 hasConcept C31689143 @default.
- W1497486022 hasConcept C33923547 @default.
- W1497486022 hasConcept C41008148 @default.
- W1497486022 hasConcept C55416958 @default.
- W1497486022 hasConcept C68387754 @default.
- W1497486022 hasConcept C85924588 @default.
- W1497486022 hasConceptScore W1497486022C107568181 @default.
- W1497486022 hasConceptScore W1497486022C111919701 @default.
- W1497486022 hasConceptScore W1497486022C119948110 @default.
- W1497486022 hasConceptScore W1497486022C120314980 @default.
- W1497486022 hasConceptScore W1497486022C126255220 @default.
- W1497486022 hasConceptScore W1497486022C127413603 @default.
- W1497486022 hasConceptScore W1497486022C127456818 @default.
- W1497486022 hasConceptScore W1497486022C13736549 @default.
- W1497486022 hasConceptScore W1497486022C158336966 @default.
- W1497486022 hasConceptScore W1497486022C206729178 @default.
- W1497486022 hasConceptScore W1497486022C2777243215 @default.
- W1497486022 hasConceptScore W1497486022C31689143 @default.
- W1497486022 hasConceptScore W1497486022C33923547 @default.
- W1497486022 hasConceptScore W1497486022C41008148 @default.
- W1497486022 hasConceptScore W1497486022C55416958 @default.
- W1497486022 hasConceptScore W1497486022C68387754 @default.
- W1497486022 hasConceptScore W1497486022C85924588 @default.
- W1497486022 hasLocation W14974860221 @default.
- W1497486022 hasLocation W14974860222 @default.
- W1497486022 hasOpenAccess W1497486022 @default.
- W1497486022 hasPrimaryLocation W14974860221 @default.
- W1497486022 hasRelatedWork W147969636 @default.
- W1497486022 hasRelatedWork W1564681331 @default.
- W1497486022 hasRelatedWork W159012016 @default.
- W1497486022 hasRelatedWork W1983073560 @default.
- W1497486022 hasRelatedWork W1988494845 @default.
- W1497486022 hasRelatedWork W1996268415 @default.
- W1497486022 hasRelatedWork W1997657969 @default.
- W1497486022 hasRelatedWork W2014638398 @default.
- W1497486022 hasRelatedWork W2068613248 @default.
- W1497486022 hasRelatedWork W2070180737 @default.
- W1497486022 hasRelatedWork W2074930690 @default.
- W1497486022 hasRelatedWork W2131211653 @default.
- W1497486022 hasRelatedWork W2136490234 @default.
- W1497486022 hasRelatedWork W2146355521 @default.
- W1497486022 hasRelatedWork W2544471983 @default.
- W1497486022 hasRelatedWork W2549186874 @default.