Matches in SemOpenAlex for { <https://semopenalex.org/work/W1497488672> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1497488672 endingPage "79" @default.
- W1497488672 startingPage "71" @default.
- W1497488672 abstract "Hard modeling of nonlinear chemical or biological systems is highly relevant as a model function together with values for model parameters provides insights in the systems' functionalities. Deriving values for said model parameters via nonlinear regression, however, is challenging as usually one of the numerous local minima of the sum-of-squared errors (SSEs) is determined; furthermore, for different starting points, different minima may be found. Thus, nonlinear regression is prone to low accuracy and low reproducibility. Therefore, there is a need for a generally applicable, automated initialization of nonlinear least squares algorithms, which reaches a good, reproducible solution after spending a reasonable computation time probing the SSE-hypersurface. For this purpose, a three-step methodology is presented in this study. First, the SSE-hypersurface is randomly probed in order to estimate probability density functions of initial model parameter that generally lead to an accurate fit solution. Second, these probability density functions then guide a high-resolution sampling of the SSE-hypersurface. This second probing focuses on those model parameter ranges that are likely to produce a low SSE. As the probing continues, the most appropriate initial guess is retained and eventually utilized in a subsequent nonlinear regression. It is shown that this “guided random search” derives considerably better regression solutions than linearization of model functions, which has so far been considered the best-case scenario. Examples from infrared spectroscopy, cell culture monitoring, reaction kinetics, and image analyses demonstrate the broad and successful applicability of this novel method. Copyright © 2014 John Wiley & Sons, Ltd." @default.
- W1497488672 created "2016-06-24" @default.
- W1497488672 creator A5090123139 @default.
- W1497488672 date "2014-07-24" @default.
- W1497488672 modified "2023-10-16" @default.
- W1497488672 title "A self-guided search for good local minima of the sum-of-squared-error in nonlinear least squares regression" @default.
- W1497488672 cites W1488375682 @default.
- W1497488672 cites W1534323335 @default.
- W1497488672 cites W1592235889 @default.
- W1497488672 cites W1782513528 @default.
- W1497488672 cites W1979261243 @default.
- W1497488672 cites W2005379723 @default.
- W1497488672 cites W2021338757 @default.
- W1497488672 cites W2042613327 @default.
- W1497488672 cites W2057802165 @default.
- W1497488672 cites W2061700997 @default.
- W1497488672 cites W2502759836 @default.
- W1497488672 cites W4302564868 @default.
- W1497488672 doi "https://doi.org/10.1002/cem.2662" @default.
- W1497488672 hasPublicationYear "2014" @default.
- W1497488672 type Work @default.
- W1497488672 sameAs 1497488672 @default.
- W1497488672 citedByCount "13" @default.
- W1497488672 countsByYear W14974886722014 @default.
- W1497488672 countsByYear W14974886722015 @default.
- W1497488672 countsByYear W14974886722016 @default.
- W1497488672 countsByYear W14974886722017 @default.
- W1497488672 countsByYear W14974886722019 @default.
- W1497488672 countsByYear W14974886722021 @default.
- W1497488672 crossrefType "journal-article" @default.
- W1497488672 hasAuthorship W1497488672A5090123139 @default.
- W1497488672 hasConcept C105795698 @default.
- W1497488672 hasConcept C11413529 @default.
- W1497488672 hasConcept C114410712 @default.
- W1497488672 hasConcept C114466953 @default.
- W1497488672 hasConcept C121332964 @default.
- W1497488672 hasConcept C126255220 @default.
- W1497488672 hasConcept C134306372 @default.
- W1497488672 hasConcept C152877465 @default.
- W1497488672 hasConcept C158622935 @default.
- W1497488672 hasConcept C167928553 @default.
- W1497488672 hasConcept C185429906 @default.
- W1497488672 hasConcept C186633575 @default.
- W1497488672 hasConcept C199360897 @default.
- W1497488672 hasConcept C28826006 @default.
- W1497488672 hasConcept C33923547 @default.
- W1497488672 hasConcept C41008148 @default.
- W1497488672 hasConcept C45923927 @default.
- W1497488672 hasConcept C46889948 @default.
- W1497488672 hasConcept C62520636 @default.
- W1497488672 hasConcept C83546350 @default.
- W1497488672 hasConcept C9936470 @default.
- W1497488672 hasConceptScore W1497488672C105795698 @default.
- W1497488672 hasConceptScore W1497488672C11413529 @default.
- W1497488672 hasConceptScore W1497488672C114410712 @default.
- W1497488672 hasConceptScore W1497488672C114466953 @default.
- W1497488672 hasConceptScore W1497488672C121332964 @default.
- W1497488672 hasConceptScore W1497488672C126255220 @default.
- W1497488672 hasConceptScore W1497488672C134306372 @default.
- W1497488672 hasConceptScore W1497488672C152877465 @default.
- W1497488672 hasConceptScore W1497488672C158622935 @default.
- W1497488672 hasConceptScore W1497488672C167928553 @default.
- W1497488672 hasConceptScore W1497488672C185429906 @default.
- W1497488672 hasConceptScore W1497488672C186633575 @default.
- W1497488672 hasConceptScore W1497488672C199360897 @default.
- W1497488672 hasConceptScore W1497488672C28826006 @default.
- W1497488672 hasConceptScore W1497488672C33923547 @default.
- W1497488672 hasConceptScore W1497488672C41008148 @default.
- W1497488672 hasConceptScore W1497488672C45923927 @default.
- W1497488672 hasConceptScore W1497488672C46889948 @default.
- W1497488672 hasConceptScore W1497488672C62520636 @default.
- W1497488672 hasConceptScore W1497488672C83546350 @default.
- W1497488672 hasConceptScore W1497488672C9936470 @default.
- W1497488672 hasIssue "2" @default.
- W1497488672 hasLocation W14974886721 @default.
- W1497488672 hasOpenAccess W1497488672 @default.
- W1497488672 hasPrimaryLocation W14974886721 @default.
- W1497488672 hasRelatedWork W155994129 @default.
- W1497488672 hasRelatedWork W1959514624 @default.
- W1497488672 hasRelatedWork W200101083 @default.
- W1497488672 hasRelatedWork W2026673180 @default.
- W1497488672 hasRelatedWork W2359835307 @default.
- W1497488672 hasRelatedWork W2589353378 @default.
- W1497488672 hasRelatedWork W2939592218 @default.
- W1497488672 hasRelatedWork W327962130 @default.
- W1497488672 hasRelatedWork W4378552425 @default.
- W1497488672 hasRelatedWork W4380487384 @default.
- W1497488672 hasVolume "29" @default.
- W1497488672 isParatext "false" @default.
- W1497488672 isRetracted "false" @default.
- W1497488672 magId "1497488672" @default.
- W1497488672 workType "article" @default.