Matches in SemOpenAlex for { <https://semopenalex.org/work/W1498274310> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1498274310 abstract "Subgraph Isomorphism is a very basic graph problem, where given two graphs $G$ and $H$ one is to check whether $G$ is a subgraph of $H$. Despite its simple definition, the Subgraph Isomorphism problem turns out to be very broad, as it generalizes problems such as Clique, $r$-Coloring, Hamiltonicity, Set Packing and Bandwidth. However, for all of the mentioned problems $2^{mathcal{O}(n)}$ time algorithms exist, so a natural and frequently asked question in the past was whether there exists a $2^{mathcal{O}(n)}$ time algorithm for Subgraph Isomorphism. In the monograph of Fomin and Kratsch [Springer'10] this question is highlighted as an open problem, among few others. Our main result is a reduction from 3-SAT, producing a subexponential number of sublinear instances of the Subgraph Isomorphism problem. In particular, our reduction implies a $2^{Omega(n sqrt{log n})}$ lower bound for Subgraph Isomorphism under the Exponential Time Hypothesis. This shows that there exist classes of graphs that are strictly harder to embed than cliques or Hamiltonian cycles. The core of our reduction consists of two steps. First, we preprocess and pack variables and clauses of a 3-SAT formula into groups of logarithmic size. However, the grouping is not arbitrary, since as a result we obtain only a limited interaction between the groups. In the second step, we overcome the technical hardness of encoding evaluations as permutations by a simple, yet fruitful scheme of guessing the sizes of preimages of an arbitrary mapping, reducing the case of arbitrary mapping to bijections. In fact, when applying this step to a recent independent result of Fomin et al.[arXiv:1502.05447 (2015)], who showed hardness of Graph Homomorphism, we can transfer their hardness result to Subgraph Isomorphism, implying a nearly tight lower bound of $2^{Omega(n log n / log log n)}$." @default.
- W1498274310 created "2016-06-24" @default.
- W1498274310 creator A5011053473 @default.
- W1498274310 creator A5037989463 @default.
- W1498274310 creator A5073398305 @default.
- W1498274310 date "2015-04-11" @default.
- W1498274310 modified "2023-09-27" @default.
- W1498274310 title "The Hardness of Subgraph Isomorphism" @default.
- W1498274310 cites W2151732151 @default.
- W1498274310 cites W2962884946 @default.
- W1498274310 hasPublicationYear "2015" @default.
- W1498274310 type Work @default.
- W1498274310 sameAs 1498274310 @default.
- W1498274310 citedByCount "2" @default.
- W1498274310 countsByYear W14982743102015 @default.
- W1498274310 countsByYear W14982743102016 @default.
- W1498274310 crossrefType "posted-content" @default.
- W1498274310 hasAuthorship W1498274310A5011053473 @default.
- W1498274310 hasAuthorship W1498274310A5037989463 @default.
- W1498274310 hasAuthorship W1498274310A5073398305 @default.
- W1498274310 hasConcept C111335779 @default.
- W1498274310 hasConcept C114614502 @default.
- W1498274310 hasConcept C115624301 @default.
- W1498274310 hasConcept C118615104 @default.
- W1498274310 hasConcept C131992880 @default.
- W1498274310 hasConcept C132525143 @default.
- W1498274310 hasConcept C185592680 @default.
- W1498274310 hasConcept C191241153 @default.
- W1498274310 hasConcept C203436722 @default.
- W1498274310 hasConcept C203776342 @default.
- W1498274310 hasConcept C22149727 @default.
- W1498274310 hasConcept C2524010 @default.
- W1498274310 hasConcept C2777035058 @default.
- W1498274310 hasConcept C2778012994 @default.
- W1498274310 hasConcept C33923547 @default.
- W1498274310 hasConcept C61665672 @default.
- W1498274310 hasConcept C8010536 @default.
- W1498274310 hasConcept C80899671 @default.
- W1498274310 hasConceptScore W1498274310C111335779 @default.
- W1498274310 hasConceptScore W1498274310C114614502 @default.
- W1498274310 hasConceptScore W1498274310C115624301 @default.
- W1498274310 hasConceptScore W1498274310C118615104 @default.
- W1498274310 hasConceptScore W1498274310C131992880 @default.
- W1498274310 hasConceptScore W1498274310C132525143 @default.
- W1498274310 hasConceptScore W1498274310C185592680 @default.
- W1498274310 hasConceptScore W1498274310C191241153 @default.
- W1498274310 hasConceptScore W1498274310C203436722 @default.
- W1498274310 hasConceptScore W1498274310C203776342 @default.
- W1498274310 hasConceptScore W1498274310C22149727 @default.
- W1498274310 hasConceptScore W1498274310C2524010 @default.
- W1498274310 hasConceptScore W1498274310C2777035058 @default.
- W1498274310 hasConceptScore W1498274310C2778012994 @default.
- W1498274310 hasConceptScore W1498274310C33923547 @default.
- W1498274310 hasConceptScore W1498274310C61665672 @default.
- W1498274310 hasConceptScore W1498274310C8010536 @default.
- W1498274310 hasConceptScore W1498274310C80899671 @default.
- W1498274310 hasLocation W14982743101 @default.
- W1498274310 hasOpenAccess W1498274310 @default.
- W1498274310 hasPrimaryLocation W14982743101 @default.
- W1498274310 hasRelatedWork W1934465368 @default.
- W1498274310 hasRelatedWork W1988197393 @default.
- W1498274310 hasRelatedWork W2000945011 @default.
- W1498274310 hasRelatedWork W2024931493 @default.
- W1498274310 hasRelatedWork W2040015059 @default.
- W1498274310 hasRelatedWork W2073919081 @default.
- W1498274310 hasRelatedWork W2143396993 @default.
- W1498274310 hasRelatedWork W2172178506 @default.
- W1498274310 hasRelatedWork W2173232259 @default.
- W1498274310 hasRelatedWork W2252464404 @default.
- W1498274310 hasRelatedWork W2521882261 @default.
- W1498274310 hasRelatedWork W2616206668 @default.
- W1498274310 hasRelatedWork W2810074797 @default.
- W1498274310 hasRelatedWork W2949695375 @default.
- W1498274310 hasRelatedWork W2951159125 @default.
- W1498274310 hasRelatedWork W2951583101 @default.
- W1498274310 hasRelatedWork W2963762269 @default.
- W1498274310 hasRelatedWork W2964045964 @default.
- W1498274310 hasRelatedWork W3101915495 @default.
- W1498274310 hasRelatedWork W3146421327 @default.
- W1498274310 isParatext "false" @default.
- W1498274310 isRetracted "false" @default.
- W1498274310 magId "1498274310" @default.
- W1498274310 workType "article" @default.