Matches in SemOpenAlex for { <https://semopenalex.org/work/W1498441431> ?p ?o ?g. }
- W1498441431 endingPage "2707" @default.
- W1498441431 startingPage "2697" @default.
- W1498441431 abstract "Phylogenetic comparative methods that incorporate intraspecific variability are relatively new and, so far, not especially widely used in empirical studies. In the present short article we will describe a new Bayesian method for fitting evolutionary models to comparative data that incorporates intraspecific variability. This method differs from an existing likelihood-based approach in that it requires no a priori inference about species means and variances; rather it takes phenotypic values from individuals and a phylogenetic tree as input, and then samples species means and variances, along with the parameters of the evolutionary model, from their joint posterior probability distribution. One of the most novel and intriguing attributes of this approach is that jointly sampling the species means with the evolutionary model parameters means that the model and tree can influence our estimates of species mean trait values, not just the reverse. In the present implementation, we first apply this method to the most widely used evolutionary model for continuously valued phenotypic trait data (Brownian motion). However, the general approach has broad applicability, which we illustrate by also fitting the λ model, another simple model for quantitative trait evolution on a phylogeny. We test our approach via simulation and by analyzing two empirical datasets obtained from the literature. Finally, we have implemented the methods described herein in a new function for the R statistical computing environment, and this function will be distributed as part of the 'phytools' R library." @default.
- W1498441431 created "2016-06-24" @default.
- W1498441431 creator A5050952793 @default.
- W1498441431 creator A5054460316 @default.
- W1498441431 date "2012-04-29" @default.
- W1498441431 modified "2023-10-15" @default.
- W1498441431 title "A NEW BAYESIAN METHOD FOR FITTING EVOLUTIONARY MODELS TO COMPARATIVE DATA WITH INTRASPECIFIC VARIATION" @default.
- W1498441431 cites W1490210895 @default.
- W1498441431 cites W1545788027 @default.
- W1498441431 cites W1605984840 @default.
- W1498441431 cites W1906304987 @default.
- W1498441431 cites W1945972853 @default.
- W1498441431 cites W1964153068 @default.
- W1498441431 cites W1979996421 @default.
- W1498441431 cites W1982848324 @default.
- W1498441431 cites W1983002447 @default.
- W1498441431 cites W1986945755 @default.
- W1498441431 cites W1987123121 @default.
- W1498441431 cites W1990221500 @default.
- W1498441431 cites W1991985445 @default.
- W1498441431 cites W1999958713 @default.
- W1498441431 cites W2013410948 @default.
- W1498441431 cites W2028562213 @default.
- W1498441431 cites W2056760934 @default.
- W1498441431 cites W2057765075 @default.
- W1498441431 cites W2083114520 @default.
- W1498441431 cites W2101139153 @default.
- W1498441431 cites W2102650396 @default.
- W1498441431 cites W2114525641 @default.
- W1498441431 cites W2117368100 @default.
- W1498441431 cites W2118787822 @default.
- W1498441431 cites W2121137609 @default.
- W1498441431 cites W2124424299 @default.
- W1498441431 cites W2125269856 @default.
- W1498441431 cites W2131333383 @default.
- W1498441431 cites W2146058063 @default.
- W1498441431 cites W2146928078 @default.
- W1498441431 cites W2151409320 @default.
- W1498441431 cites W2151723210 @default.
- W1498441431 cites W2162399971 @default.
- W1498441431 cites W2179984775 @default.
- W1498441431 cites W2196722132 @default.
- W1498441431 cites W4230357098 @default.
- W1498441431 cites W4239250911 @default.
- W1498441431 cites W4246186045 @default.
- W1498441431 cites W4246732979 @default.
- W1498441431 doi "https://doi.org/10.1111/j.1558-5646.2012.01645.x" @default.
- W1498441431 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22946797" @default.
- W1498441431 hasPublicationYear "2012" @default.
- W1498441431 type Work @default.
- W1498441431 sameAs 1498441431 @default.
- W1498441431 citedByCount "50" @default.
- W1498441431 countsByYear W14984414312013 @default.
- W1498441431 countsByYear W14984414312014 @default.
- W1498441431 countsByYear W14984414312015 @default.
- W1498441431 countsByYear W14984414312016 @default.
- W1498441431 countsByYear W14984414312017 @default.
- W1498441431 countsByYear W14984414312018 @default.
- W1498441431 countsByYear W14984414312019 @default.
- W1498441431 countsByYear W14984414312020 @default.
- W1498441431 countsByYear W14984414312021 @default.
- W1498441431 countsByYear W14984414312022 @default.
- W1498441431 countsByYear W14984414312023 @default.
- W1498441431 crossrefType "journal-article" @default.
- W1498441431 hasAuthorship W1498441431A5050952793 @default.
- W1498441431 hasAuthorship W1498441431A5054460316 @default.
- W1498441431 hasBestOaLocation W14984414311 @default.
- W1498441431 hasConcept C104317684 @default.
- W1498441431 hasConcept C106934330 @default.
- W1498441431 hasConcept C107673813 @default.
- W1498441431 hasConcept C111472728 @default.
- W1498441431 hasConcept C113174947 @default.
- W1498441431 hasConcept C131892835 @default.
- W1498441431 hasConcept C134306372 @default.
- W1498441431 hasConcept C138885662 @default.
- W1498441431 hasConcept C154945302 @default.
- W1498441431 hasConcept C160234255 @default.
- W1498441431 hasConcept C176771619 @default.
- W1498441431 hasConcept C18903297 @default.
- W1498441431 hasConcept C193252679 @default.
- W1498441431 hasConcept C199360897 @default.
- W1498441431 hasConcept C2776214188 @default.
- W1498441431 hasConcept C2779377595 @default.
- W1498441431 hasConcept C33923547 @default.
- W1498441431 hasConcept C41008148 @default.
- W1498441431 hasConcept C55493867 @default.
- W1498441431 hasConcept C75553542 @default.
- W1498441431 hasConcept C78458016 @default.
- W1498441431 hasConcept C86803240 @default.
- W1498441431 hasConceptScore W1498441431C104317684 @default.
- W1498441431 hasConceptScore W1498441431C106934330 @default.
- W1498441431 hasConceptScore W1498441431C107673813 @default.
- W1498441431 hasConceptScore W1498441431C111472728 @default.
- W1498441431 hasConceptScore W1498441431C113174947 @default.
- W1498441431 hasConceptScore W1498441431C131892835 @default.
- W1498441431 hasConceptScore W1498441431C134306372 @default.
- W1498441431 hasConceptScore W1498441431C138885662 @default.
- W1498441431 hasConceptScore W1498441431C154945302 @default.