Matches in SemOpenAlex for { <https://semopenalex.org/work/W1498761330> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1498761330 abstract "Phase transformations are ubiquitous, fundamental phenomena that lie at the heart of many structural, optical and electronic properties in condensed matter physics and materials science. Many transformations, especially those occurring under extreme conditions such as rapid changes in the thermodynamic state, are controlled by poorly understood processes involving the nucleation and quenching of metastable phases. Typically these processes occur on time and length scales invisible to most experimental techniques ({micro}s and faster, nm and smaller), so our understanding of the dynamics tends to be very limited and indirect, often relying on simulations combined with experimental study of the ''time infinity'' end state. Experimental techniques that can directly probe phase transformations on their proper time and length scales are therefore key to providing fundamental insights into the whole area of transformation physics and materials science. LLNL possesses a unique dynamic transmission electron microscope (DTEM) capable of taking images and diffraction patterns of laser-driven material processes with resolution measured in nanometers and nanoseconds. The DTEM has previously used time-resolved diffraction patterns to quantitatively study phase transformations that are orders of magnitude too fast for conventional in situ TEM. More recently the microscope has demonstrated the ability to directly image a reaction front moving at {approx}13 nm/ns and the nucleation of a new phase behind that front. Certain compound semiconductor phase change materials, such as Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), Sb{sub 2}Te and GeSb, exhibit a technologically important series of transformations on scales that fall neatly into the performance specifications of the DTEM. If a small portion of such material is heated above its melting point and then rapidly cooled, it quenches into an amorphous state. Heating again with a less intense pulse leads to recrystallization into a vacancy-stabilized metastable rock salt structure. Each transformation takes {approx}10-100 ns, and the cycle can be driven repeatedly a very large number of times with a nanosecond laser such as the DTEM's sample drive laser. These materials are widely used in optical storage devices such as rewritable CDs and DVDs, and they are also applied in a novel solid state memory technology - phase change memory (PCM). PCM has the potential to produce nonvolatile memory systems with high speed, extreme density, and very low power requirements. For PCM applications several materials properties are of great importance: the resistivities of both phases, the crystallization temperature, the melting point, the crystallization speed, reversibility (number of phase-transformation cycles without degradation) and stability against crystallization at elevated temperature. For a viable technology, all these properties need to have good scaling behavior, as dimensions of the memory cells will shrink with every generation. In this LDRD project, we used the unique single-shot nanosecond in situ experimentation capabilities of the DTEM to watch these transformations in GST on the time and length scales most relevant for device applications. Interpretation of the results was performed in conjunction with atomistic and finite-element computations. Samples were provided by collaborators at IBM and Stanford University. We observed, and measured the kinetics of, the amorphous-crystalline and melting-solidification transitions in uniform thin-film samples. Above a certain threshold, the crystal nucleation rate was found to be enormously high (with many nuclei appearing per cubic {micro}m even after nanosecond-scale incubation times), in agreement with atomistic simulation and consistent with an extremely low nucleation barrier. We developed data reduction techniques based on principal component analysis (PCA), revealing the complex, multi-dimensional evolution of the material while suppressing noise and irrelevant information. Using a novel specimen geometry, we also achieved repeated switching between the amorphous and crystalline phases enabling in situ study of structural change after phase cycling, which is relevant to device performance. We also observed the coupling between the phase transformations and the evolution of morphology on the nanometer scale, revealing the gradual development of striations in uniform films and preferential melting at sharp edges in laser-heated nanopatterned GST. This nonuniform melting, interpreted through simulation as being a direct result of geometrical laser absorption effects, appears to be responsible for a marked loss in morphological stability even at moderate laser intensities and may be an important factor in the longevity of nanostructured phase change materials in memory applications." @default.
- W1498761330 created "2016-06-24" @default.
- W1498761330 creator A5005686890 @default.
- W1498761330 creator A5009554381 @default.
- W1498761330 creator A5043758880 @default.
- W1498761330 creator A5060746564 @default.
- W1498761330 creator A5064125924 @default.
- W1498761330 creator A5066588905 @default.
- W1498761330 creator A5070703432 @default.
- W1498761330 creator A5077792493 @default.
- W1498761330 creator A5083675900 @default.
- W1498761330 creator A5086676936 @default.
- W1498761330 creator A5090852119 @default.
- W1498761330 date "2011-01-04" @default.
- W1498761330 modified "2023-10-16" @default.
- W1498761330 title "Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation" @default.
- W1498761330 doi "https://doi.org/10.2172/1018817" @default.
- W1498761330 hasPublicationYear "2011" @default.
- W1498761330 type Work @default.
- W1498761330 sameAs 1498761330 @default.
- W1498761330 citedByCount "0" @default.
- W1498761330 crossrefType "report" @default.
- W1498761330 hasAuthorship W1498761330A5005686890 @default.
- W1498761330 hasAuthorship W1498761330A5009554381 @default.
- W1498761330 hasAuthorship W1498761330A5043758880 @default.
- W1498761330 hasAuthorship W1498761330A5060746564 @default.
- W1498761330 hasAuthorship W1498761330A5064125924 @default.
- W1498761330 hasAuthorship W1498761330A5066588905 @default.
- W1498761330 hasAuthorship W1498761330A5070703432 @default.
- W1498761330 hasAuthorship W1498761330A5077792493 @default.
- W1498761330 hasAuthorship W1498761330A5083675900 @default.
- W1498761330 hasAuthorship W1498761330A5086676936 @default.
- W1498761330 hasAuthorship W1498761330A5090852119 @default.
- W1498761330 hasBestOaLocation W14987613302 @default.
- W1498761330 hasConcept C101496351 @default.
- W1498761330 hasConcept C120665830 @default.
- W1498761330 hasConcept C121332964 @default.
- W1498761330 hasConcept C159467904 @default.
- W1498761330 hasConcept C171250308 @default.
- W1498761330 hasConcept C185592680 @default.
- W1498761330 hasConcept C192562407 @default.
- W1498761330 hasConcept C207114421 @default.
- W1498761330 hasConcept C26873012 @default.
- W1498761330 hasConcept C44280652 @default.
- W1498761330 hasConcept C56052488 @default.
- W1498761330 hasConcept C61048295 @default.
- W1498761330 hasConcept C62520636 @default.
- W1498761330 hasConcept C77557913 @default.
- W1498761330 hasConcept C8010536 @default.
- W1498761330 hasConcept C89464430 @default.
- W1498761330 hasConcept C97355855 @default.
- W1498761330 hasConceptScore W1498761330C101496351 @default.
- W1498761330 hasConceptScore W1498761330C120665830 @default.
- W1498761330 hasConceptScore W1498761330C121332964 @default.
- W1498761330 hasConceptScore W1498761330C159467904 @default.
- W1498761330 hasConceptScore W1498761330C171250308 @default.
- W1498761330 hasConceptScore W1498761330C185592680 @default.
- W1498761330 hasConceptScore W1498761330C192562407 @default.
- W1498761330 hasConceptScore W1498761330C207114421 @default.
- W1498761330 hasConceptScore W1498761330C26873012 @default.
- W1498761330 hasConceptScore W1498761330C44280652 @default.
- W1498761330 hasConceptScore W1498761330C56052488 @default.
- W1498761330 hasConceptScore W1498761330C61048295 @default.
- W1498761330 hasConceptScore W1498761330C62520636 @default.
- W1498761330 hasConceptScore W1498761330C77557913 @default.
- W1498761330 hasConceptScore W1498761330C8010536 @default.
- W1498761330 hasConceptScore W1498761330C89464430 @default.
- W1498761330 hasConceptScore W1498761330C97355855 @default.
- W1498761330 hasLocation W14987613301 @default.
- W1498761330 hasLocation W14987613302 @default.
- W1498761330 hasLocation W14987613303 @default.
- W1498761330 hasOpenAccess W1498761330 @default.
- W1498761330 hasPrimaryLocation W14987613301 @default.
- W1498761330 hasRelatedWork W2014224430 @default.
- W1498761330 hasRelatedWork W2016534351 @default.
- W1498761330 hasRelatedWork W2035547974 @default.
- W1498761330 hasRelatedWork W2060410079 @default.
- W1498761330 hasRelatedWork W2083337343 @default.
- W1498761330 hasRelatedWork W212761123 @default.
- W1498761330 hasRelatedWork W2553270037 @default.
- W1498761330 hasRelatedWork W2802778428 @default.
- W1498761330 hasRelatedWork W3197582295 @default.
- W1498761330 hasRelatedWork W946078428 @default.
- W1498761330 isParatext "false" @default.
- W1498761330 isRetracted "false" @default.
- W1498761330 magId "1498761330" @default.
- W1498761330 workType "report" @default.