Matches in SemOpenAlex for { <https://semopenalex.org/work/W1498998908> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1498998908 abstract "Topic model has attracted much attention from investigators, as it provides users with insights into the huge volumes of documents. However, most previous related studies that based on Non-negative Matrix Factorization (NMF) neglect to figure out which topics are widespread in the documents and which are not. These widespread topics, which we refer to coarse-grained topics, have great significance for people who concentrate on common topics in a given text set. For example, after reading the massive job ads, the jobseekers are eager to learn employers' basic requirements which can be regarded as the coarse-grained topics, as well as the additional requirements that can be deemed to be the fine-grained topics. In this paper, we propose a novel method which applies two different sparseness constraints to NMF to tell coarse-grained topics and fine-grained topics apart. The experimental results of demonstrate that the new model can not only discover coarse-grained topics but also extract fine-grained topics. We evaluate the performance of the new model via text clustering and classification, and the results show the new model can learn more accurate topic representations of documents." @default.
- W1498998908 created "2016-06-24" @default.
- W1498998908 creator A5003759585 @default.
- W1498998908 creator A5006320644 @default.
- W1498998908 creator A5018426114 @default.
- W1498998908 creator A5019690305 @default.
- W1498998908 date "2015-03-01" @default.
- W1498998908 modified "2023-10-16" @default.
- W1498998908 title "Modeling Both Coarse-Grained and Fine-Grained Topics in Massive Text Data" @default.
- W1498998908 cites W1902027874 @default.
- W1498998908 cites W1974490937 @default.
- W1498998908 cites W2013029404 @default.
- W1498998908 cites W2080931159 @default.
- W1498998908 cites W2093497228 @default.
- W1498998908 cites W2147152072 @default.
- W1498998908 doi "https://doi.org/10.1109/bigdataservice.2015.21" @default.
- W1498998908 hasPublicationYear "2015" @default.
- W1498998908 type Work @default.
- W1498998908 sameAs 1498998908 @default.
- W1498998908 citedByCount "1" @default.
- W1498998908 countsByYear W14989989082023 @default.
- W1498998908 crossrefType "proceedings-article" @default.
- W1498998908 hasAuthorship W1498998908A5003759585 @default.
- W1498998908 hasAuthorship W1498998908A5006320644 @default.
- W1498998908 hasAuthorship W1498998908A5018426114 @default.
- W1498998908 hasAuthorship W1498998908A5019690305 @default.
- W1498998908 hasConcept C121332964 @default.
- W1498998908 hasConcept C152671427 @default.
- W1498998908 hasConcept C154945302 @default.
- W1498998908 hasConcept C158693339 @default.
- W1498998908 hasConcept C171686336 @default.
- W1498998908 hasConcept C177264268 @default.
- W1498998908 hasConcept C17744445 @default.
- W1498998908 hasConcept C199360897 @default.
- W1498998908 hasConcept C199539241 @default.
- W1498998908 hasConcept C204321447 @default.
- W1498998908 hasConcept C23123220 @default.
- W1498998908 hasConcept C2522767166 @default.
- W1498998908 hasConcept C41008148 @default.
- W1498998908 hasConcept C42355184 @default.
- W1498998908 hasConcept C554936623 @default.
- W1498998908 hasConcept C62520636 @default.
- W1498998908 hasConcept C73555534 @default.
- W1498998908 hasConceptScore W1498998908C121332964 @default.
- W1498998908 hasConceptScore W1498998908C152671427 @default.
- W1498998908 hasConceptScore W1498998908C154945302 @default.
- W1498998908 hasConceptScore W1498998908C158693339 @default.
- W1498998908 hasConceptScore W1498998908C171686336 @default.
- W1498998908 hasConceptScore W1498998908C177264268 @default.
- W1498998908 hasConceptScore W1498998908C17744445 @default.
- W1498998908 hasConceptScore W1498998908C199360897 @default.
- W1498998908 hasConceptScore W1498998908C199539241 @default.
- W1498998908 hasConceptScore W1498998908C204321447 @default.
- W1498998908 hasConceptScore W1498998908C23123220 @default.
- W1498998908 hasConceptScore W1498998908C2522767166 @default.
- W1498998908 hasConceptScore W1498998908C41008148 @default.
- W1498998908 hasConceptScore W1498998908C42355184 @default.
- W1498998908 hasConceptScore W1498998908C554936623 @default.
- W1498998908 hasConceptScore W1498998908C62520636 @default.
- W1498998908 hasConceptScore W1498998908C73555534 @default.
- W1498998908 hasLocation W14989989081 @default.
- W1498998908 hasOpenAccess W1498998908 @default.
- W1498998908 hasPrimaryLocation W14989989081 @default.
- W1498998908 hasRelatedWork W1966846766 @default.
- W1498998908 hasRelatedWork W2147339185 @default.
- W1498998908 hasRelatedWork W2167353662 @default.
- W1498998908 hasRelatedWork W2168039431 @default.
- W1498998908 hasRelatedWork W2273149514 @default.
- W1498998908 hasRelatedWork W2481706124 @default.
- W1498998908 hasRelatedWork W2601157141 @default.
- W1498998908 hasRelatedWork W4229011615 @default.
- W1498998908 hasRelatedWork W4285239292 @default.
- W1498998908 hasRelatedWork W4298385783 @default.
- W1498998908 isParatext "false" @default.
- W1498998908 isRetracted "false" @default.
- W1498998908 magId "1498998908" @default.
- W1498998908 workType "article" @default.