Matches in SemOpenAlex for { <https://semopenalex.org/work/W1499980765> ?p ?o ?g. }
- W1499980765 endingPage "50" @default.
- W1499980765 startingPage "1" @default.
- W1499980765 abstract "The AdS/CFT correspondence was introduced by Maldacena 20 years ago [433]. Soon important contributions were made by Gubser-Klebanov-Polyakov [293] and by Witten [572]. We recall the two ingredients of the AdS/CFT correspondence [433, 293, 572]: 1. the holography principle, which is very old, and means the reconstruction of some objects in the bulk (which may be classical or quantum) from some objects on the boundary; 2. the reconstruction of quantum objects, like 2-point functions on the boundary, from appropriate actions on the bulk. Here we give a group-theoretic interpretation of the AdS/CFT correspondence as a relation of a representation equivalence between representations of the conformal group describing the bulk AdS fields ø, their boundary fields ø0 and the boundary conformal operators O coupled to the latter. We use two kinds of equivalences. The first kind is the equivalence between the representations describing the bulk fields and the boundary fields and it is established here. The second kind is the equivalence between conjugated conformal representations related by Weyl reflection, e. g. the coupled fields ø0 and O. Operators realizing the first kind of equivalence for special cases were actually given by Witten and others-here they are constructed in a more general setting from the requirement that they are intertwining operators. The intertwining operators realizing the second kind of equivalence are provided by the standard conformal two-point functions. Using both equivalences we find that the bulk field has in fact two boundary fields, namely, the coupled fields ø0 and O, the limits being governed by the corresponding conjugated conformal weights. In this chapter we give a group-theoretic interpretation of relativistic holography as equivalence between representations in three cases: 1. the Euclidean conformal (or de Sitter) group; 2. the anti de Sitter group SO(3,2); 3. the Schrödinger group. In each case we give explicitly boundary-to-bulk operators and we show that these operators and the easier bulk-to-boundary operators are intertwining operators. Furthermore, we show that each bulk field has two boundary (shadow) fields with conjugated conformal weights. These fields are related by another intertwining operator, given by a two-point function on the boundary." @default.
- W1499980765 created "2016-06-24" @default.
- W1499980765 creator A5016858411 @default.
- W1499980765 date "2019-04-01" @default.
- W1499980765 modified "2023-09-23" @default.
- W1499980765 title "1. Relativistic and nonrelativistic holography" @default.
- W1499980765 cites W1488669693 @default.
- W1499980765 cites W1513185481 @default.
- W1499980765 cites W1583746591 @default.
- W1499980765 cites W1597325299 @default.
- W1499980765 cites W1663389674 @default.
- W1499980765 cites W1774685962 @default.
- W1499980765 cites W1822733143 @default.
- W1499980765 cites W1838622148 @default.
- W1499980765 cites W1889142700 @default.
- W1499980765 cites W1964712915 @default.
- W1499980765 cites W1967226785 @default.
- W1499980765 cites W1968321843 @default.
- W1499980765 cites W1968436095 @default.
- W1499980765 cites W1969003545 @default.
- W1499980765 cites W1969183248 @default.
- W1499980765 cites W1973177383 @default.
- W1499980765 cites W1978882328 @default.
- W1499980765 cites W1982947654 @default.
- W1499980765 cites W1992740574 @default.
- W1499980765 cites W1998909324 @default.
- W1499980765 cites W2003378896 @default.
- W1499980765 cites W2004180130 @default.
- W1499980765 cites W2008259798 @default.
- W1499980765 cites W2010443636 @default.
- W1499980765 cites W2013638788 @default.
- W1499980765 cites W2016167242 @default.
- W1499980765 cites W2018084296 @default.
- W1499980765 cites W2025492397 @default.
- W1499980765 cites W2028635715 @default.
- W1499980765 cites W2030780496 @default.
- W1499980765 cites W2031004362 @default.
- W1499980765 cites W2032838331 @default.
- W1499980765 cites W2033994437 @default.
- W1499980765 cites W2045376897 @default.
- W1499980765 cites W2051243065 @default.
- W1499980765 cites W2052356468 @default.
- W1499980765 cites W2057111305 @default.
- W1499980765 cites W2057815325 @default.
- W1499980765 cites W2057855483 @default.
- W1499980765 cites W2060489750 @default.
- W1499980765 cites W2066808161 @default.
- W1499980765 cites W2072015796 @default.
- W1499980765 cites W2072128500 @default.
- W1499980765 cites W2075672245 @default.
- W1499980765 cites W2078345330 @default.
- W1499980765 cites W2082900225 @default.
- W1499980765 cites W2088346835 @default.
- W1499980765 cites W2088475539 @default.
- W1499980765 cites W2091825069 @default.
- W1499980765 cites W2097361073 @default.
- W1499980765 cites W2097479977 @default.
- W1499980765 cites W2098851607 @default.
- W1499980765 cites W2099204364 @default.
- W1499980765 cites W2103786378 @default.
- W1499980765 cites W2105809288 @default.
- W1499980765 cites W2107240173 @default.
- W1499980765 cites W2118613219 @default.
- W1499980765 cites W2118628122 @default.
- W1499980765 cites W2120121612 @default.
- W1499980765 cites W2127240410 @default.
- W1499980765 cites W2129925474 @default.
- W1499980765 cites W2130702733 @default.
- W1499980765 cites W2131113009 @default.
- W1499980765 cites W2131934658 @default.
- W1499980765 cites W2138360656 @default.
- W1499980765 cites W2140061095 @default.
- W1499980765 cites W2140134899 @default.
- W1499980765 cites W2146582111 @default.
- W1499980765 cites W2151271622 @default.
- W1499980765 cites W2152023312 @default.
- W1499980765 cites W2153274301 @default.
- W1499980765 cites W2155421289 @default.
- W1499980765 cites W2157236990 @default.
- W1499980765 cites W2159787624 @default.
- W1499980765 cites W2162284105 @default.
- W1499980765 cites W2166592280 @default.
- W1499980765 cites W2166606564 @default.
- W1499980765 cites W2169436951 @default.
- W1499980765 cites W2173346706 @default.
- W1499980765 cites W2256450072 @default.
- W1499980765 cites W2502484828 @default.
- W1499980765 cites W2949122228 @default.
- W1499980765 cites W2950804306 @default.
- W1499980765 cites W2952627518 @default.
- W1499980765 cites W2963715524 @default.
- W1499980765 cites W3011086369 @default.
- W1499980765 cites W3099268546 @default.
- W1499980765 cites W3099386811 @default.
- W1499980765 cites W3100728245 @default.
- W1499980765 cites W3105507125 @default.
- W1499980765 cites W3106267542 @default.
- W1499980765 doi "https://doi.org/10.1515/9783110611403-001" @default.