Matches in SemOpenAlex for { <https://semopenalex.org/work/W1500012012> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1500012012 endingPage "71" @default.
- W1500012012 startingPage "63" @default.
- W1500012012 abstract "Models such as the Cornell Net Carbohydrate and Protein System include many non-linear functions. As such, non-linear optimization techniques that converge quickly and efficiently for field application are required. The objective of this paper is to introduce a genetic algorithm for optimization within the CNCPS ver. 6.1 framework. Genetic algorithms are generally categorized as global search heuristics. The genetic algorithm initially seeds the optimization with binary (0,1) representations of potential solutions (chromosomes). It then introduces crossover and mutation rates (set by the user) that automatically force changes in the chromosome combinations by changing the binary coding. Each solution is evaluated against fitness tests (e.g. nutrient and feed constraints). Two types of nutrient constraints have been utilized: soft and hard. A hard constraint forces the solution to be within set ranges. Soft constraints are set to be either equal, or within the range of the hard constraints. As solutions are evaluated, they are compared with soft constraints first. If a solution falls between a soft and hard constraint, a penalty function is applied. Solutions not meeting hard constraints are removed from the solution set. The penalty adds a ‘cost’ to the solution. If the resulting ‘cost’ adjusted solution is favorable over other solutions, it is kept within the solution set. This allows for solutions to be evaluated that may be nutritionally acceptable but slightly less then desirable. As an example, given variation in parameter measurements and model variation, it is nearly impossible to say that a 20.9% peNDF solution is different then a 21% peNDF solution; however, the cost of such a solution may be 1–10% different. Genetic algorithms also allow multiple objective functions. In this implementation, least cost or maximum income over feed costs were selected. Evaluations have shown that marginal incomes can be increased 5–10% by simply changing the objective function.Keywordsnonlinearobjective functionmodels" @default.
- W1500012012 created "2016-06-24" @default.
- W1500012012 creator A5008702988 @default.
- W1500012012 creator A5017602077 @default.
- W1500012012 creator A5020100883 @default.
- W1500012012 creator A5081363558 @default.
- W1500012012 date "2011-01-01" @default.
- W1500012012 modified "2023-09-26" @default.
- W1500012012 title "Implementation of a genetic algorithm for optimization within the Cornell Net Carbohydrate and Protein System framework" @default.
- W1500012012 cites W1997346206 @default.
- W1500012012 cites W215366727 @default.
- W1500012012 cites W2211420917 @default.
- W1500012012 cites W2911346016 @default.
- W1500012012 cites W575435111 @default.
- W1500012012 doi "https://doi.org/10.3920/978-90-8686-712-7_7" @default.
- W1500012012 hasPublicationYear "2011" @default.
- W1500012012 type Work @default.
- W1500012012 sameAs 1500012012 @default.
- W1500012012 citedByCount "0" @default.
- W1500012012 crossrefType "book-chapter" @default.
- W1500012012 hasAuthorship W1500012012A5008702988 @default.
- W1500012012 hasAuthorship W1500012012A5017602077 @default.
- W1500012012 hasAuthorship W1500012012A5020100883 @default.
- W1500012012 hasAuthorship W1500012012A5081363558 @default.
- W1500012012 hasConcept C11413529 @default.
- W1500012012 hasConcept C122507166 @default.
- W1500012012 hasConcept C126255220 @default.
- W1500012012 hasConcept C127705205 @default.
- W1500012012 hasConcept C154945302 @default.
- W1500012012 hasConcept C177264268 @default.
- W1500012012 hasConcept C199360897 @default.
- W1500012012 hasConcept C2524010 @default.
- W1500012012 hasConcept C2776036281 @default.
- W1500012012 hasConcept C33923547 @default.
- W1500012012 hasConcept C41008148 @default.
- W1500012012 hasConcept C8880873 @default.
- W1500012012 hasConceptScore W1500012012C11413529 @default.
- W1500012012 hasConceptScore W1500012012C122507166 @default.
- W1500012012 hasConceptScore W1500012012C126255220 @default.
- W1500012012 hasConceptScore W1500012012C127705205 @default.
- W1500012012 hasConceptScore W1500012012C154945302 @default.
- W1500012012 hasConceptScore W1500012012C177264268 @default.
- W1500012012 hasConceptScore W1500012012C199360897 @default.
- W1500012012 hasConceptScore W1500012012C2524010 @default.
- W1500012012 hasConceptScore W1500012012C2776036281 @default.
- W1500012012 hasConceptScore W1500012012C33923547 @default.
- W1500012012 hasConceptScore W1500012012C41008148 @default.
- W1500012012 hasConceptScore W1500012012C8880873 @default.
- W1500012012 hasLocation W15000120121 @default.
- W1500012012 hasOpenAccess W1500012012 @default.
- W1500012012 hasPrimaryLocation W15000120121 @default.
- W1500012012 hasRelatedWork W1547752062 @default.
- W1500012012 hasRelatedWork W1573449042 @default.
- W1500012012 hasRelatedWork W1593856761 @default.
- W1500012012 hasRelatedWork W1986958725 @default.
- W1500012012 hasRelatedWork W2029548544 @default.
- W1500012012 hasRelatedWork W2053092642 @default.
- W1500012012 hasRelatedWork W2072268707 @default.
- W1500012012 hasRelatedWork W2295866346 @default.
- W1500012012 hasRelatedWork W2560919631 @default.
- W1500012012 hasRelatedWork W2772709731 @default.
- W1500012012 hasRelatedWork W2898863354 @default.
- W1500012012 hasRelatedWork W2938009385 @default.
- W1500012012 hasRelatedWork W2941783922 @default.
- W1500012012 hasRelatedWork W2964499203 @default.
- W1500012012 hasRelatedWork W3121844755 @default.
- W1500012012 hasRelatedWork W3154038255 @default.
- W1500012012 hasRelatedWork W752196098 @default.
- W1500012012 hasRelatedWork W1477742873 @default.
- W1500012012 hasRelatedWork W1482766195 @default.
- W1500012012 hasRelatedWork W2280644021 @default.
- W1500012012 isParatext "false" @default.
- W1500012012 isRetracted "false" @default.
- W1500012012 magId "1500012012" @default.
- W1500012012 workType "book-chapter" @default.