Matches in SemOpenAlex for { <https://semopenalex.org/work/W1500336502> ?p ?o ?g. }
- W1500336502 endingPage "519" @default.
- W1500336502 startingPage "517" @default.
- W1500336502 abstract "Summary This thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of bioreactors for waste gas treatment, such as compost biofilters and bioscrubbers. Propene was used as a model pollutant to study the membrane bioreactor. A membrane bioreactor for waste gas treatment consists of a gas and a liquid compartment, separated by a membrane. Gaseous pollutants diffuse through the membrane and are consumed by microorganisms present in the liquid phase. The organisms are supplied with water and inorganic nutrients via this liquid phase. Various membrane bioreactors described in the literature are reviewed in Chapter 2. In the work presented in this thesis, microporous hydrophobic material was selected because of its low mass transfer resistance and the availability of both sheets and fibres. For the removal of propene from air the mass transfer resistance of this type of membrane was found to be negligible (Chapter 3). The propene-degrading bacterium Xanthobacter Py2 was shown to form biofilms in membrane bioreactors. Continuous propene removal by biofilms of Xanthobacter Py2 was demonstrated in both flat sheet reactors and hollow-fibre reactors. In both configurations the biofilms are situated on the membrane in the liquid phase. Propene consumption rates could be described quite accurately with the computer programme BIOSIM, that describes simultaneous diffusion and reaction in a biolayer (Chapter 3). During continuous operation of hollow-fibre reactors at inlet concentrations of 0.5 to 6 gram propene per m 3, the propene conversion decreased after several weeks (Chapter 4). Clogging of the fibres by excess biomass formation and acidification due to ammonium oxidation, were identified as possible causes. However, when both clogging and ammonium oxidation were prevented, the propene conversion still decreased in time. Apparently other factors than clogging and nitrification affect the long-term performance of biofilms of Xanthobacter Py2, growing In an MBR. These factors might be Identified with new methods for biofilm analysis, which allow the localization of activity within the biofilm. According to the Dutch emission standards, hydrocarbons such as propene, in offgas have to be reduced to less than 150 mg m -3. In Chapter 5, two propenedegrading strains were compared for their ability to degrade such low concentrations of propene and the faster growing strain, Xanthobacter Py2, was selected. At a concentration of 300 to 600 mg m -3in the gas phase, a 20 days startup period was required for biofilm formation. Once the biofilm had been established, the amount of active biomass adapted to the amount of propene available Within several days. Propene could be removed continuously from air at a concentration of 15 to 50 mg m -3in the gas phase without supplying other organic nutrients to the microbial population (Chapter 5). Besides the removal of poorly water soluble pollutants like propene, the membrane bioreactor is also suitable for the removal of pollutants that result in acidification, such as chlorinated hydrocarbons. Therefore, in Chapter 6 the biodegradation of trichloroethene (TCE) by Xanthobacter Py2 was tested during growth on propene in a stirred vessel. The aerobic biodegradation of TCE is difficult because of toxic intermediates that are formed. With Xanthobacter Py2 continuous cometabolic degradation of TCE was shown to be feasible with concentrations up to 206 μM in the liquid phase. The amount of TCE that could be degraded, depended on the TCE concentration and ranged from 0.03 to 0.34 grams of TCE per gram of biomass. Membrane bioreactors for gas-liquid contact have several potential applications. They are suitable for the removal of poorly soluble pollutants from air because of their large gas-liquid interface and small mass transfer resistance. Especially if biodegradation of a poorly soluble pollutant results in acidification, the membrane bioreactor might be a unique tool, since the acidic product can be removed via the liquid phase. Other applications might be the removal of highly chlorinated hydrocarbons from air by an aerobic or a combined anaerobic/aerobic: process, as was recently suggested in literature. Membrane bioreactors may also be useful tools in biofilm research, because of easy handling and processing of biofilm samples, excellent oxygen transfer properties and the possibility to apply counter gradients." @default.
- W1500336502 created "2016-06-24" @default.
- W1500336502 creator A5063602821 @default.
- W1500336502 date "1997-01-01" @default.
- W1500336502 modified "2023-09-26" @default.
- W1500336502 title "Membrane bioreactor for waste gas treatment." @default.
- W1500336502 cites W1210392479 @default.
- W1500336502 cites W1491323157 @default.
- W1500336502 cites W1491840464 @default.
- W1500336502 cites W1493511953 @default.
- W1500336502 cites W1504574098 @default.
- W1500336502 cites W1510131236 @default.
- W1500336502 cites W1513986900 @default.
- W1500336502 cites W1519053703 @default.
- W1500336502 cites W1522887894 @default.
- W1500336502 cites W1531914072 @default.
- W1500336502 cites W1544105047 @default.
- W1500336502 cites W1550122207 @default.
- W1500336502 cites W1551814984 @default.
- W1500336502 cites W1575203455 @default.
- W1500336502 cites W1586942773 @default.
- W1500336502 cites W1607690417 @default.
- W1500336502 cites W1783581160 @default.
- W1500336502 cites W1798796282 @default.
- W1500336502 cites W1807365116 @default.
- W1500336502 cites W1882603223 @default.
- W1500336502 cites W1922688230 @default.
- W1500336502 cites W1967400032 @default.
- W1500336502 cites W1967780506 @default.
- W1500336502 cites W1971881995 @default.
- W1500336502 cites W1976871555 @default.
- W1500336502 cites W1978395084 @default.
- W1500336502 cites W1979225821 @default.
- W1500336502 cites W1979869386 @default.
- W1500336502 cites W1989693176 @default.
- W1500336502 cites W1994123398 @default.
- W1500336502 cites W1997992893 @default.
- W1500336502 cites W1999996958 @default.
- W1500336502 cites W2012056298 @default.
- W1500336502 cites W2012226829 @default.
- W1500336502 cites W2014299399 @default.
- W1500336502 cites W2023373137 @default.
- W1500336502 cites W2025769988 @default.
- W1500336502 cites W2028102298 @default.
- W1500336502 cites W2031641184 @default.
- W1500336502 cites W2036881386 @default.
- W1500336502 cites W2038035740 @default.
- W1500336502 cites W2039190154 @default.
- W1500336502 cites W2039377838 @default.
- W1500336502 cites W2039698839 @default.
- W1500336502 cites W2040004231 @default.
- W1500336502 cites W2046781827 @default.
- W1500336502 cites W2047705017 @default.
- W1500336502 cites W2057580836 @default.
- W1500336502 cites W2057821851 @default.
- W1500336502 cites W2060970630 @default.
- W1500336502 cites W2062024634 @default.
- W1500336502 cites W2063411397 @default.
- W1500336502 cites W2063504733 @default.
- W1500336502 cites W2069636271 @default.
- W1500336502 cites W2070079694 @default.
- W1500336502 cites W2071792666 @default.
- W1500336502 cites W2072203329 @default.
- W1500336502 cites W2075258600 @default.
- W1500336502 cites W2075370484 @default.
- W1500336502 cites W2076702415 @default.
- W1500336502 cites W2077252366 @default.
- W1500336502 cites W2078261188 @default.
- W1500336502 cites W2080735862 @default.
- W1500336502 cites W2084463955 @default.
- W1500336502 cites W2084668309 @default.
- W1500336502 cites W2096438410 @default.
- W1500336502 cites W2096660057 @default.
- W1500336502 cites W2098007393 @default.
- W1500336502 cites W2103470265 @default.
- W1500336502 cites W2106816073 @default.
- W1500336502 cites W2114790334 @default.
- W1500336502 cites W2115167869 @default.
- W1500336502 cites W2119137757 @default.
- W1500336502 cites W2126450925 @default.
- W1500336502 cites W2130113110 @default.
- W1500336502 cites W2134457396 @default.
- W1500336502 cites W2141588510 @default.
- W1500336502 cites W2142182392 @default.
- W1500336502 cites W2143682643 @default.
- W1500336502 cites W2146474082 @default.
- W1500336502 cites W2148837678 @default.
- W1500336502 cites W2153692672 @default.
- W1500336502 cites W2154697497 @default.
- W1500336502 cites W2158429703 @default.
- W1500336502 cites W2159656690 @default.
- W1500336502 cites W2160046332 @default.
- W1500336502 cites W2166137341 @default.
- W1500336502 cites W2171823554 @default.
- W1500336502 cites W2462450589 @default.
- W1500336502 cites W2484558649 @default.
- W1500336502 cites W2520428117 @default.
- W1500336502 cites W2523731135 @default.