Matches in SemOpenAlex for { <https://semopenalex.org/work/W1500428599> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1500428599 abstract "We introduce the concept of a sink equilibrium. A sink equilibrium is a strongly connected component with no outgoing arcs in the strategy profile graph associated with a game. The strategy profile graph has a vertex set induced by the set of pure strategy profiles; its arc set corresponds to transitions between strategy profiles that occur with nonzero probability. (Here our focus will just be on the special case in which the strategy profile graph is actually a best response graph; that is, its arc set corresponds exactly to best response moves that result from myopic or greedy behaviour). We argue that there is a natural convergence process to sink equilibria in games where agents use pure strategies. This leads to an alternative measure of the social cost of a lack of coordination, the price of sinking, which measures the worst case ratio between the value of a sink equilibrium and the value of the socially optimal solution. We define the value of a sink equilibrium to be the expected social value of the steady state distribution induced by a random walk on that sink. We illustrate the value of this measure in three ways. Firstly, we show that it may more accurately reflects the inefficiency of uncoordinated solutions in competitive games when the use of pure strategies is the norm. In particular, we give an example (a valid-utility game) in which the game converges to solutions which are a factor n worse than socially optimal. The price of sinking is indeed n, but the price of anarchy is close to 1. Secondly, sink equilibria always exist. Thus, even in games in which pure strategy Nash equilibria (PSNE) do not exist, we can still calculate the price of sinking. Thirdly, we show that bounding the price of sinking can have important implications for the speed of convergence to socially good solutions in games where the agents make best response moves in a random order. We present two examples to illustrate our ideas. (i) Unsplittable selfish routing (and weighted congestion games):we prove that the price of sinking for the weighted unsplittable flow version of the selfish routing problem (for bounded-degree polynomial latency functions) is at most O(2/sup 2d/ d/sup 2d + 3/). In comparison, we give instances of these games without any PSNE. Moreover, our proof technique implies fast convergence to socially good (approximate) solutions. This is in contrast to the negative result of Fabrikant, Papadimitriou, and Talwar (2004) showing the existence of exponentially long best-response paths. (ii) Valid-utility games: we show that for valid-utility games the price of sinking is at most n+1; thus the worst case price of sinking in a valid-utility game is between it and n+1. We use our proof to show fast convergence to constant factor approximate solutions in basic-utility games. In addition, we present a hardness result which shows that, in general, there might be states that are exponentially far from any sink equilibrium in valid-utility games. We prove this by showing that the problem of finding a sink equilibrium (or a PSNE) in valid-utility games is PLS-complete." @default.
- W1500428599 created "2016-06-24" @default.
- W1500428599 creator A5027727214 @default.
- W1500428599 creator A5075598023 @default.
- W1500428599 creator A5079132077 @default.
- W1500428599 date "2005-11-15" @default.
- W1500428599 modified "2023-10-16" @default.
- W1500428599 title "Sink Equilibria and Convergence" @default.
- W1500428599 cites W1526250527 @default.
- W1500428599 cites W1960974220 @default.
- W1500428599 cites W1964011541 @default.
- W1500428599 cites W2040194491 @default.
- W1500428599 cites W2062459871 @default.
- W1500428599 cites W2112269231 @default.
- W1500428599 cites W2125537511 @default.
- W1500428599 cites W2130937741 @default.
- W1500428599 cites W2145297839 @default.
- W1500428599 cites W2159759087 @default.
- W1500428599 cites W4231608524 @default.
- W1500428599 doi "https://doi.org/10.1109/sfcs.2005.68" @default.
- W1500428599 hasPublicationYear "2005" @default.
- W1500428599 type Work @default.
- W1500428599 sameAs 1500428599 @default.
- W1500428599 citedByCount "177" @default.
- W1500428599 countsByYear W15004285992012 @default.
- W1500428599 countsByYear W15004285992013 @default.
- W1500428599 countsByYear W15004285992014 @default.
- W1500428599 countsByYear W15004285992015 @default.
- W1500428599 countsByYear W15004285992016 @default.
- W1500428599 countsByYear W15004285992017 @default.
- W1500428599 countsByYear W15004285992018 @default.
- W1500428599 countsByYear W15004285992019 @default.
- W1500428599 countsByYear W15004285992020 @default.
- W1500428599 countsByYear W15004285992021 @default.
- W1500428599 countsByYear W15004285992022 @default.
- W1500428599 countsByYear W15004285992023 @default.
- W1500428599 crossrefType "proceedings-article" @default.
- W1500428599 hasAuthorship W1500428599A5027727214 @default.
- W1500428599 hasAuthorship W1500428599A5075598023 @default.
- W1500428599 hasAuthorship W1500428599A5079132077 @default.
- W1500428599 hasConcept C114614502 @default.
- W1500428599 hasConcept C126255220 @default.
- W1500428599 hasConcept C132525143 @default.
- W1500428599 hasConcept C143050476 @default.
- W1500428599 hasConcept C144237770 @default.
- W1500428599 hasConcept C162324750 @default.
- W1500428599 hasConcept C175444787 @default.
- W1500428599 hasConcept C205649164 @default.
- W1500428599 hasConcept C2778869765 @default.
- W1500428599 hasConcept C33923547 @default.
- W1500428599 hasConcept C41008148 @default.
- W1500428599 hasConcept C58640448 @default.
- W1500428599 hasConcept C80899671 @default.
- W1500428599 hasConceptScore W1500428599C114614502 @default.
- W1500428599 hasConceptScore W1500428599C126255220 @default.
- W1500428599 hasConceptScore W1500428599C132525143 @default.
- W1500428599 hasConceptScore W1500428599C143050476 @default.
- W1500428599 hasConceptScore W1500428599C144237770 @default.
- W1500428599 hasConceptScore W1500428599C162324750 @default.
- W1500428599 hasConceptScore W1500428599C175444787 @default.
- W1500428599 hasConceptScore W1500428599C205649164 @default.
- W1500428599 hasConceptScore W1500428599C2778869765 @default.
- W1500428599 hasConceptScore W1500428599C33923547 @default.
- W1500428599 hasConceptScore W1500428599C41008148 @default.
- W1500428599 hasConceptScore W1500428599C58640448 @default.
- W1500428599 hasConceptScore W1500428599C80899671 @default.
- W1500428599 hasLocation W15004285991 @default.
- W1500428599 hasOpenAccess W1500428599 @default.
- W1500428599 hasPrimaryLocation W15004285991 @default.
- W1500428599 hasRelatedWork W1575344590 @default.
- W1500428599 hasRelatedWork W1984908116 @default.
- W1500428599 hasRelatedWork W2039833788 @default.
- W1500428599 hasRelatedWork W2188724876 @default.
- W1500428599 hasRelatedWork W2329325022 @default.
- W1500428599 hasRelatedWork W2357461155 @default.
- W1500428599 hasRelatedWork W2529289829 @default.
- W1500428599 hasRelatedWork W2755640416 @default.
- W1500428599 hasRelatedWork W2773832270 @default.
- W1500428599 hasRelatedWork W3103481709 @default.
- W1500428599 isParatext "false" @default.
- W1500428599 isRetracted "false" @default.
- W1500428599 magId "1500428599" @default.
- W1500428599 workType "article" @default.