Matches in SemOpenAlex for { <https://semopenalex.org/work/W1501358439> ?p ?o ?g. }
- W1501358439 endingPage "415" @default.
- W1501358439 startingPage "387" @default.
- W1501358439 abstract "Free Access References and Author Index Ali Hasan Nayfeh, Ali Hasan NayfehSearch for more papers by this author Book Author(s):Ali Hasan Nayfeh, Ali Hasan NayfehSearch for more papers by this author First published: 15 August 2000 https://doi.org/10.1002/9783527617609.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Ablowitz, M. J., and D. J. Benney, (1970). The evolution of multi-phase modes for nonlinear dispersive waves. Stud. Appl. Math., 49, 225– 238. [234] Abraham-Shrauner, B. (1970a). Suppression of runaway of electrons in a Lorentz plasma. I. Harmonically time varying electric field. J. Plasma Phys., 4, 387– 402. [235] Abraham-Shrauner, B. (1970b). Suppression of runaway of electrons in a Lorentz plasma. II. Crossed electric and magnetic fields. J. Plasma Phy., 4, 441– 450. [235] Ackerberg, R. C., and R. E. O'Malley, Jr. (1970). Boundary layer problems exhibiting resonance. Stud. Appl. Math., 49, 277– 295. [233] Ahluwalia, D. S., R. M., Lewis, and J. Boersma, (1968). Uniform asymptotic theory of diffraction by a plane screen. SIAM J. Appl. Math., 16, 783– 807 [380] Akins, R. G., See Chang, Akins, and Bankoff. Akinsete, V. A., and J. H. S. Lee, (1969). Nonsimilar effects in the collapsing of an empty spherical cavity in water. Phys. Fluids, 12, 428– 434 [78] Albright, N. W. (1970). Quasilinear stabilization of the transverse instability. Phys. Fluids, 13, 1021– 1030. [235] Alfriend, K. T. (1970). The stability of the triangular Lagrangian points for commensurability of order two. Celestial Mech., 1, 351– 359. [233] Alfriend, K. T. (1971a). Stability and motion in two-degree-of-freedom Hamiltonian systems for two-to-one commensurability. Celestial Mech., 3, 247– 265. [233] Alfriend, K. T. (1971b). Stability of and motion about L4 at three-to-one commensurability. Celestial Mech., 4, 60– 77. [233] Alfriend, K. T. See Davis and Alfriend. Alfriend, K. T., and R. H. Rand, (1969). Stability of the triangular points in the elliptic restricted problem of three bodies. AIAA J., 7, 1024– 1028. [233, 260, 262, 276] Al'tshul', L. M., and V. I. Karpman, (1966). Theory of nonlinear oscillations in a collisionless plasma. Soviet Phys. JETP (English transl.), 22, 361– 369. [369] Alzheimer, W. E., and R. T. Davis, (1966). Theory of nonlinear oscillations in a collisionless plasma. Soviet Phys. JETP (English transl.), 22, 361– 369. [369] Alzheimer, W. E., and R. T. Davis, (1968). Unsymmetrical bending of prestressed annular plates. J. Eng. Mech. Div. Proc. ASCE, 4, 905– 917. [35, 128] Amazigo, J. C., B., Budiansky, and G. F. Carrier (1970). Asymptotic analyses of the buckling of imperfect columns on nonlinear elastic foundations. Int. J. Solids Structures, 6, 1341– 1356. [233] Anderson, W. J., See Spriggs, Messiter, and Anderson. Asano, N. (1970). Reductive perturbation method for nonlinear wave propagation in inhomogeneous media. III. J. Phys. Soc. Japan, 29, 220– 224. [78] Asano, N. and T., Taniuti, (1969). Reductive perturbation method for nonlinear wave propagation in inhomogeneous media. I. J. Phys. Soc. Japan, 27, 1059– 1062. Asano, N., and T. Taniuti (1970). Reductive perturbation method for nonlinear wave propagation in inhomogeneous media II. J. Phys. Soc. Japan, 29, 209– 214. [78] Ashley, H. (1967). Multiple scaling in flight vehicle dynamic analysis — a preliminary look. AIAA Paper No. 67–560. [233] Avila, G. S. S., and J. B. Keller, (1963). The high frequency asymptotic field of a point source in an inhomogeneous medium. Comm. Pure Appl. Math., 16, 363– 381. [380] Babich, V. M. (1965). A point source in an inhomogeneous medium. Z. Vycisl. Mat. i Mat. Fiz., 5, 949– 951; English transl., USSR Computer Math. Math. Phys., 5, 247– 251. [380] Babich, V. M. (1970). Mathematical Problems in Wave Propagation Theory, Part I. Plenum, New York. [361, 380] Babich, V. M. (1971). Mathematical Problems in Wave Propagation Theory. Part II. Plenum, New York. [361, 380] Babich, V. M., and T. S. Kravtsova, (1967). Propagation of wave film type oscillations of quantized thickness. PMM, 31, 204– 210. [380] Balescu, R. (1963). Statistical Mechanics of Charged Particles. Wiley, New York. [367, 369] Ball, R. H. (1964). Nonlinear theory of waves in a cold homogeneous plasma without magnetic field. Stanford Microwave Laboratory Rept. No. 1200. [234] Bankoff, S. G., See Chang, Akins, and Bankoff. Barakat, R., and A. Houston, (1968). Nonlinear periodic capillary-gravity waves on a fluid of finite depth. J. Geophys. Res. 73 6545– 6554. [77] Barón, V. (1970). Some inertial modifications of the linear viscous theory of steady rotating fluid flows. Phys. Fluids, 13, 537– 544. [235] Barrar, R. B. (1970). Convergence of the von Zeipel procedure. Celestial Mech., 2, 494– 504. [192] Barua, S. N. (1954). Secondary flow in a rotating straight pipe. Proc. Roy. Soc. (London), A227, 133– 139. [79] Bauer, H. F. (1968). Nonlinear response of elastic plates to pulse excitations. J. Appl. Mech., 35, 47– 52. [58] Bellman, R. (1955). Research problems. Bull. Am. Math Soc., 61, 192. [22] Bellman, R. (1964). Perturbation Techniques in Mathematics, Physics, and Engineering. Holt, New York. [309] Benney, D. J. (1965). The flow induced by a disk oscillating about a state of steady rotation. Quart. J. Mech. Appl. Math., 18, 333– 345. [235] Benney, D. J. (1966). Long waves on liquid films. J. Math. and Phys., 45, 150– 155. [41] Benney, D. J. (1967). The asymptotic behavior of nonlinear dispersive waves. J. Math. and Phys., 46, 115– 132. [234] Benney, D. J., See Ablowitz and Benney. Benney, D. J., and A. C. Newell, (1967). Sequential time closures for interacting random waves. J. Math. and Phys., 46, 363– 393. [234] Benney, D. J., and A. C. Newell, (1969). Random wave closures. Stud. Appl. Math., 48, 29– 53. [234] Benney, D. J., and G. J. Roskes, (1969). Wave instabilities. Stud. Appl. Math., 48, 377– 385. [235] Benney, D. J. and P. G., Saffman, (1966). Nonlinear interactions of random waves in a dispersive medium. Proc. Roy. Soc. (London), A289, 301– 320. [234] Bethe, H. A. See Salpeter and Bethe. Bisshopp, F. (1969). A modified stationary principle for nonlinear waves. J. Diff. Equations, 5, 592– 605. [216] Bleistein, N. (1967). Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities. J. Math. Mech., 17, 533– 559. [380] Bleistein, N., See Lewis, Bleistein, and Ludwig. Boersma, J., See Ahluwalia, Lewis, and Boersma. Bogoliubov, N. N., See Krylov and Bogoliubov. Bogoliubov, N. N., and Y. A. Mitropolski, (1961). Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York. [168, 174] Bohlin, K. P. (1889). Uber eine neue Annaherungsmethode in der Storungstheorie, Akad Handl. Bihang., 14, (Afdl, Stokholm). [56] Born, M. (1926). Quantum mechanics of impact processes. Z. Phys., 38, 803– 827. [362] Bourret, R. C. (1962a). Propagation of randomly perturbed fields. Can. J. Phys., 40, 782– 790. [367, 369, 372] Bourret, R. C. (1962b) Stochastically perturbed fields, with applications to wave propagation in random media. Nuovo Cimento, 26, 1– 31. [367, 369, 372] Brau, C. A. (1967). On the stochastic theory of dissociation and recombination of diatomic molecules in inert dilutens. J. Chem. Phys., 47, 1153– 1163. [235] Breakwell, J. V., and L. M. Perko, (1966). Matched asymptotic expansions, patched conics, and the computation of interplanetary trajectories. In Progress in Astronautics and Aeronautics, Vol. 17, Method in Astrodynamics and Celestial Mechanics ( R. L. Duncombe, and V. G. Szebehely, Eds.) Academic, New York, pp. 159– 182. [138] Breakwell, J. V., and R. Pringle, Jr. (1966). Resonances affecting motion near the earth-moon equilateral libration points. In Progress in Astronautics and Aeronautics, Vol. 17, Methods in Astrodynamics and Celestial Mechanics ( R. L. Duncombe, and V. G. Szebehely, Eds.) Academic, New York, pp. 55– 74. [199] Bretherton, F. P. (1962). Slow viscous motion round a cylinder in a simple shear. J. Fluid Mech., 12, 591– 613. [110] Bretherton, F. P. (1964). Resonant interactions between waves. The case of discrete oscillations. J. Fluid Mech., 20, 457– 479. [217, 227, 267, 298] Bretherton, F. P. (1968). Propagation in slowly varying waveguides. Proc. Roy. Soc. (London), A 302, 555– 576. [216] Bretherton, F. P., and C. J. R. Garrett (1968). Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. (London), A302, 529– 554. [216] Brillouin, L. (1926). Remarques sur la mecanique ondulatoire. J. Phys. Radium, 7, 353– 368. [114, 315, 339] Brofman, S., See Ting and Brofman. Brofman, W. (1967). Approximate analytical solution for satellite orbits subjected to small thrust or drag. AIAA J., 5, 1121– 1128. [233] Bromberg, E. (1956). Nonlinear bending of a circular plate under normal pressure. Comm. Pure Appl. Math., 9, 633– 659. [144, 146] Brown, W. P., Jr. (1966). Validity of the Rytov approximation in optical propagation calculations. J. Opt. Soc. Am., 56, 1045– 1052. [373] Brown, W. P., Jr. (1967). Validity of the Rytov approximation. J. Opt. Soc. Am., 57, 1539– 1543. [373] Brull, M. A., and A. I. Soler, (1966). A new perturbation technique for differential equations with small parameters. Quart. Appl. Math., 24, 143– 151. [383] Buchal, R. N., and J. B. Keller, (1960). Boundary layer problems in diffraction theory. Comm. Pure Appl. Math., 13, 85– 144. [378] Budiansky, B., See Amazigo, Budiansky, and Carrier. Burnside, R. R. (1970). A note on Lighthill's method of strained coordinates. SIAM J. Appl. Math., 18, 318– 321. [79, 107] Buslaev, N. S. (1964). On formulas of short wave asymptotics in the problem of diffraction by convex bodies. Akad. Nauk SSSR Trudy Mat. Inst. Steklov, 73, 14– 117. [380] Butler, D. S., and R. J. Gribben (1968). Relativistic formulation for non-linear waves in a non-uniform plasma. J. Plasma Phys., 2, 257– 281. [234] Caldirola, P., O. De Barbéri, and C. Maroli, (1966). Electromagnetic wave propagation in a weakly ionized plasma. I. Nuovo Cimento, B42, 266– 289. [236] Campbell, J. A., and W. H. Jefferys, (1970). Equivalence of the perturbation theories of Hori and Deprit. Celestial Mech., 2, 467– 473. [202] Carlini, F. (1817). Ricerche sulla convergenza della serie che serve alla soluzione del problema di Keplero. Memoria di Francesco Carlini, Milano; also. Jacobi's Ges Werke, 7, 189– 245. also Astron. Nachrichten, 30, 197– 254. [315] Carrier, G. F. (1953). Boundary layer problems in applied mechanics. Advan. Appl. Mech., 3, 1– 19. [119] Carrier, G. F. (1954). Boundary layer problems in applied mathematics. Comm. Pure Appl. Math., 7, 11– 17 [114] Carrier, G. F. (1966). Gravity waves on water of variable depth. J. Fluid Mech., 24, 641– 659. [234] Carrier, G. F. (1970). Singular pertubation theory and geophysics. SIAM Rev., 12, 175– 193. [110] Carrier, G. F., See Amazigo, Budiansky, and Carrier. Cashwell, E. D. (1951). The asymptotic solutions of an ordinary differential equation in which the coefficient of the parameter is singular. Pacific J. Math., 1, 337– 353. [358] Caughey, T. K., See Tso and Caughey. Caughey, T. K., and H. J. Payne, (1967). On the response of a class of self-excited oscillators to stochastic excitation. Int. J. Non-Linear Mech., 2, 125– 151. [235] Cesari, L. (1971). Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. Springer-Verlag, New York. [309] Chang, K. S., R. G., Akins, and S. G. Bankoff, (1966). Free convection of a liquid metal from a uniformly heated vertical plate. Ind. Eng. Chem. Fundam., 5, 26– 37. [79] Chen, C. S. (1971). Parametric excitation in an inhomogeneous plasma. J. Plasma Phys., 5, 107– 113. [235] Chen, C. S., and G. J. Lewak, (1970). Parametric excitation of a plasma. J. Plasma Phys., 4, 357– 369. [235] Cheng, H. and T. T., Wu (1970). An aging spring. Stud. Appl. Math., 49, 183– 185. [232] Cheng, H. K., J. W., Kirsch, and R. S. Lee, (1971). On the reattachment of a shock layer produced by an instantaneous energy release. J. Fluid Mech., 48, 241– 263, [235] Cheng, S. I., See Goldburg and Cheng. Chernov, L. A. (1960). Wave Propagation in a Random Medium. Dover, New York. [361, 373] Cherry, T. M. (1927). On the transformation of Hamiltonian systems of linear differential equations with constant or periodic coefficients. Proc. Lond. Math. Soc., 26, 211– 230. [199] Cherry, T. M. (1949). Uniform asymptotic expansions. J. London Math. Soc., 24, 121– 130. [346] Cherry, T. M. (1950). Uniform asymptotic formulae for functions with transition points. Trans. Am. Math. Soc., 68, 224– 257. [346] Chong, T. H., and L. Sirovich, (1971). Non-linear effects in steady supersonic dissipative gas dynamics. Part 1 — Two-dimensional flow. J. Fluid Mech., 50, 161– 176. [235] Chu, B. T. (1963). Analysis of a self-sustained thermally driven nonlinear vibration. Phys. Fluids, 6, 1638– 1644. [89] Chu, B. T., and S. J. Ying, (1963). Thermally driven nonlinear oscillations in a pipe with travelling shock waves. Phys. Fluid, 6, 1625– 1637. [89] Chu, V. H., and C. C. Mei (1970). On slowly-varying Stokes waves. J. Fluid Mech., 41, 873– 887. [234] Chudov, L. A. (1966). Some shortcomings of classical boundary layer theory. NASA (transl.) TT F-360, TT 65–50138 [145] Clare, T. A. (1971). Resonance instability for finned configurations having nonlinear aerodynamic properties. J. Spacecraft Rockets, 8, 278– 283. [305] Clark, R. A. (1958). Asymptotic solutions of toroidal shell problems. Quart. Appl. Math., 16, 47– 60. [353] Clark, R. A. (1963). Asymptotic solutions of a nonhomogeneous differential equation with a turning point. Arch. Rat. Mech. Anal., 12, 34– 51. [353, 356] Clark, R. A. (1964). Asymptotic solutions of elastic shell problems. in Asymptotic Solutions of Differential Equations and Their Applications ( C. H. Wilcox, Ed.), Wiley, New York, pp. 185– 209. [353] Coakley, T. J. (1968). Dynamic stability of symmetric spinning missiles. J. Spacecraft Rockets, 5, 1231– 1232. [321] Cochran, J. A. (1962). Problems in singular perturbation theory. Ph. D. Thesis, Stanford University. [232, 233, 234, 280, 285] Coddington, E. A., and N. Levinson, (1955). Theory of Ordinary Differential Equations. McGraw-Hill, New York. [60, 62] Coffey, T. P., Jr. (1969). Invariants to all orders in classical perturbation theory. J. Math. Phys., 10, 426– 438. [199] Cole, J. D. (1968). Perturbation Methods in Applied Mathematics. Blaisdell, Waltham, Mass. Cole, J. D., See Lagerstrom and Cole. Cole, J. D., and J. Kevorkian, (1963). Uniformly valid asymptotic approximations for certain nonlinear differential equations. Nonlinear Differential Equations and Nonlinear Mechanics ( J. P. LaSalle, and S. Lefschetz, Eds.), Academic, New York, pp. 113– 120. [231, 232, 273] Comstock, C. (1968). On Lighthill's method of strained coordinates. SIAM J. Appl. Math., 16, 596– 602. [79, 107] Comstock, C. (1971). Singular perturbations of elliptic equations. I. SIAM J. Appl. Math., 20, 491– 502. [234] Contopoulos, G. (1963). On the existence of a third integral of motion. Astron. J., 68, 1– 14. [199] Crane, L. J. (1959). A note on Stewartson's paper “On asymptotic expansions in the theory of boundary layers”. J. Math. and Phys., 38, 172– 174. [79] Crapper, G. D. (1970). Nonlinear capillary waves generated by steep gravity waves. J. Fluid Mech., 40, 149– 159. [217] Crawford, F. W., See Galloway and Crawford. Crocco, L., See Sirignano and Crocco. Das, K. P. (1971). Interaction among three extraordinary waves in a hot electron plasma. Phys. Fluids, 14, 124– 128. [234] Davidson, R. C. (1967). The evolution of wave correlations in uniformly turbulent, weakly nonlinear systems. J. Plasma Phys., 1, 341– 359. [234] Davidson, R. C. (1968). Nonlinear oscillations in a Vlasov-Maxwell plasma. Phys. Fluids, 11, 194– 204. [234] Davidson, R. C. (1969). General weak turbulence theory of resonant fourwave processes. Phys. Fluids, 12, 149– 161. [234] Davis, R. T., See Alzheimer and Davis; Wingate and Davis. Davis, R. T., and K. T. Alfriend, (1967). Solutions to van der Pol's equation using a perturbation method. Int. J. Non-Linear Mech., 2, 153– 162. [232] Davison, L. (1968). Perturbation theory of nonlinear elastic wave propagation. Int. J. Solids Structures, 4, 301– 322. [90, 91, 94] De Barbieri, O., See Caldirola, De Barbieri, and Maroli. De Barbieri, O., and C. Maroli, (1967). On the dynamics of weakly ionized gases. Ann. Phys., 42, 315– 333. [236] De Bruijn, N. G. (1958). Asymptotic Methods in Analysis. North-Holland, Amsterdam; Interscience, New York. [18] Deprit, A. (1969). Canonical transformations depending on a small parameter. Celestial Mech., 1, 12– 30. [199, 201, 202, 205, 212] Dewar, R. L. (1970). Interaction between hydromagnetic waves and a time-dependent, inhomogeneous medium. Phys. Fluids., 13, 2710– 2720. [217] DeWolf, D. A. (1965). Wave propagation through quasi-optical irregularities. J. Opt. Soc. Am., 55, 812– 817. [373] DeWolf, D. A. (1967). Validity of Rytov's approximation. J. Opt. Soc. Am., 57, 1057– 1058. [373] DiPrima, R. C. (1969). Higher order approximations in the asymptotic solution of the Reynolds equation for slider bearings at high bearing numbers. J. Lubrication Technology, 91, 45– 51. [125] Dirac, P. A. M. (1926). On the theory of quantum mechanics. Proc. Roy. Soc. (London), A112, 661– 677. [161] Dobrowolny, M., and A. Rogister, (1971). Non-linear theory of hydromagnetic waves in a high β plasma. J. Plasma Phys., 6, 401– 412. [235] Dorodnicyn, A. A. (1947). Asymptotic solution of van der Pol's equation. J. Appl. Math. Mech., 11, 313– 328; Am. Math. Soc. Transl., 88, 1953. [114] Dougherty, J. P. (1970). Lagrangian methods in plasma dynamics. I. General theory of the method of the averaged Lagrangian. J. Plasma Phys, 4, 761– 785. [217] Drazin, P. G. (1969). Nonlinear internal gravity waves in a slightly stratified atmosphere. J. Fluid Mech., 36, 433– 446. [216] Dyson, F. J. (1949). The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 75, 486– 502. [371]. Eckhaus, W. (1965). Studies in Nonlinear Stability Theory. Springer-Verlag, New York. [162] Eckstein, M. C., See Shi and Eckstein. Eckstein, M. C. and Y. Y., Shi (1967). Low-thrust elliptic spiral trajectories of a satellite of variable mass. AIAA J., 5, 1491– 1494. [233] Eckstien, M. C., Y. Y., Shi, and J. Kevorkian, (1966a). A uniformly valid asymptotic representation of satellite motion around the smaller primary in the restricted three-body problem. In Progress in Astronautics and Aeronautics, Vol. 17, Methods in Astrodynamics and Celestial Mechanics ( R. L. Duncombe and V. G. Szebehely, Eds.), Academic, New York, pp. 183– 198. [233, 276] Eckstein, M. C., Y. Y., Shi, and J. Kevorkian, (1966b). Satellite motion for arbitrary eccentricity and inclination around the smaller primary in the restricted three-body problem. Astron. J., 71, 248– 263. [233] Eckstein, M. C., Y. Y., Shi, and J. Kevorkian (1966c). Use of the energy integral to evaluate higher-order terms in the time history of satellite motion. Astron. J., 71, 301– 305. [233] Einaudi, F. (1969). Singular perturbation analysis of acoustic-gravity waves. Phys. Fluids, 12, 752– 756. [78] Einaudi, F. (1970). Shock formation in acoustic gravity waves. J. Geophys. Res., 75, 193– 200. [78] Emanuel, G. (1966). Unsteady, diffusing, reacting tubular flow with application to the flow in a glow discharge tube. Aerospace Corporation Rept. No. TR-669 (6240–20)–9. [99] Emery, V. J. (1970). Eikonal approximation for nonlinear equations. J. Math. Phys., 11, 1893– 1900. [234] Erdélyi, A. (1956). Asymptotic Expansions. Dover, New York. [18, 309, 337] Erdéyi, A. (1960). Asymptotic solutions of differential equations with transition points or singularities. J. Math. Phys., 1, 16– 26. [358] Erdéyi, A. (1961). An expansion procedure for singular perturbations. Atti. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., 95, 651– 672. [113, 121] Ernst, R. R., and H. Primas (1963). Nuclear magnetic resonance with stochastic high-frequency fields. Helv. Phys. Acta., 36, 583– 600. [382] Espedal, M. S. (1971). The effects of ion-ion collision on an ion-acoustic plasma pulse. J. Plasma Phys., 5, 343– 355. [78] Euler, L. (1754). Novi Commentarii Acad. Sci. Petropolitanae, 5, 205– 237; Opera Omnia, Ser. I. 14, 585– 617. [11] Evensen, D. A. (1968). Nonlinear vibrations of beams with various boundary conditions. AIAA J., 6, 370– 372. [106] Evgrafov, M. A., and M. B. Fedoryuk, (1966). Asymptotic behavior of solutions of the equation w(z) — p(z', λ)w(z) = 0 as λ → ∞ in the complex z-plane. Usp.Mat.Nauk, 21, 3– 50. [345] Faa De Bruno, F., (1857). Note sur une nouvelle formule de calcul differentiel. Quart. J. Pure Appl. Math., 1, 359– 360. [192] Fedoryuk, M. B., See Evgrafov and Fedoryuk. Felsen, L. B., See Levey and Felsen. Feshchenko, S. F., N. I., Shkil', and L. D. Nikolenko, (1967). Asymptotic Methods in the Theory of Linear Differential Equations. American Elsevier, New York. [309, 319] Feynman, R. P. (1948). Space-time approach to nonrelativistic quantum mechanics. Rev. Modern Phys., 20, 367– 387. [366] Fife, P., See Pierson and Fife. Fock, V. A. (1965). Electromagnetic Diffraction and Propagation Problems. Pergamon, New York. [380] Fowkes, N. D. (1968). A singular perturbation method. Parts I and II. Quart. Appl. Math., 26, 57– 69, 71–85. [232, 234, 379, 285] Fowler, R. H., and C. N. H. Lock, (1921). Approximate solutions of linear differential equations. Proc. London Math. Soc., 20, 127– 147. [321, 322] Fowler, R. H., E. G., Gallop, C. N. H. Lock, and H. W. Richmond (1920). The aerodynamics of a spinning shell. Phil. Trans. Roy. Soc. London, 221, 295– 387. [321, 322] Fox, P. A. (1953). On the use of coordinate perturbations in the solution of physical problems. Project DIC 6915 Technical Rept. No. 1, Massachusetts Institute of Technology, Cambridge. [98] Fox, P. A. (1955). Perturbation theory of wave propagation based on the method of characteristics. J. Math. and Phys., 34, 133– 151. [57, 87, 89] Fraenkel, L. E. (1969). On the method of matched asymptotic expansions, Parts I-III. Proc. Cambridge Phil. Soc., 65, 209– 231, 233–251, 263–284. [119] Freeman, N. C., and R. S. Johnson, (1970). Shallow water waves on shear flows. J. Fluid Mech., 42, 401– 409. [234] Fried, D. L. (1967). Test of the Rytov approximation. J. Opt. Soc. Am., 57, 268– 269. [373] Friedrichs, K. O. (1942). Theory of viscous fluids. Fluid Dynamics. Brown University Press, Providence, R. I., Chapter 4. [119] Friedrichs, K. O. (1955). Asymptotic phenomena in mathematical physics. Bull. Am. Math. Soc., 61, 485– 504. [18] Frieman, E. A. (1963). On a new method in the theory of irreversible processes. J. Math. Phys., 4, 410– 418. [230] Frieman, E. A., and P. Rutherford, (1964). Kinetic theory of a weakly unstable plasma. Ann. Phys., 28, 134– 177. [235] Frisch, U. (1965). Wave Propagation in Random Media. Institut d'Astrophysique, Paris. [367, 369] Frisch, U. (1968). Wave propagation in random media. Probability Methods in Applied Mathematics, Vol. 1 ( A. T. Bharucha-Reid, Ed.), Academic, New York, pp. 75– 198. [309, 361, 364, 365, 367, 372, 380, 381] Frobenius, G. (1875). Veber die regulären Integrale der linearen Differentialgleichungen. J. Reine Angew. Math., 80, 317– 333. [310] Furutsu, K. (1963). On the statistical theory of electromagnetic waves in a fluctuating medium. J. Res. Natl. Bur. Standards, Sec. D, 67, 303– 323. [367, 369] Gallop, E. G., See Fowler, Gallop, Lock, and Richmond. Galloway, J. J., and F. W. Crawford, (1970). Lagrangian derivation of wave-wave coupling coefficients. Proc. 4th European Conference on Controlled Fusion and Plasma Physics, Rome (CHEN), 161. [217] Galloway, J. J. and H., Kim, (1971). Lagrangian approach to non-linear wave interactions in a warm plasma. J. Plasma Phys., 6, 53– 72. [217] Gans, R. (1915). Propagation of light through an inhomogeneous media. Ann. Phys., 47, 709– 736. [114, 339] Garrett, C. J. R. (1968). On the interaction between internal gravity waves and a shear flow. J. Fluid Mech., 34, 711– 720. [216] Garrett, C. J. R., See Bretherton and Garrett. Germain, P. (1967). Recent evolution in problems and methods in aerodynamics. J. Roy. Aeron. Soc., 71, 673– 691. [110, 235] Gertsenshtein, M. E., See Tatarski and Gertsenshtein. Giacaglia, G. E. O. (1964). Notes on von Zeipel's method. NASA X-547–64–161. [191] Golay, M. J. E. (1964). Normalized equations of the regenerative oscillator-noise, phase-locking, and pulling. Proc. IEEE, 52, 1311– 1330. [258] Goldberg, P., and G. Sandri, (1967). Power series of kinetic theory. Parts I and II. Phys. Rev., L154, 188– 209. [236] Goldburg, A., and S. I. Cheng, (1961). The anomaly in the application of Poincaré-Light-hill-Kuo and parabolic coordinates to the trailing edge boundary layer. J. Math. Mech., 10, 529– 535. [79] Goldstein, H., (1965). Classical Mechanics. Addison-Wesley, Reading, Mass. [181] Goldstein, S., (1929). The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers. Proc. Roy. Soc. (London)., A-123, 225– 235. [141] Goldstein, S. (1931). A note on certain approximate solutions of linear differential equations of the second order. Proc. London Math. Soc., 33, 246– 252. [346] Goldstein, S. (1969). Applications of singular perturbations and boundary-layer theory to simple ordinary differential equations. In Contributions to Mechanics ( D. Abir, Ed.), Pergamon, Oxford, pp. 41– 67. [317] Good, R. H., See Miller and Good. Goodrich, R. F., and N. D. Kazarinoff, (1963). Diffraction by thin elliptic cylinders. Michigan Math. J., 10, 105– 127. [346] Gorelik, G., and A. Witt, (1933). Swing of an elastic pendulum as an example of two parametrically bound linear vibration systems. J. Tech. Phys. (USSR,), 3, 244– 307. [185] Green, G. (1837). On the motion of w" @default.
- W1501358439 created "2016-06-24" @default.
- W1501358439 creator A5042354204 @default.
- W1501358439 date "2000-08-15" @default.
- W1501358439 modified "2023-09-24" @default.
- W1501358439 title "References and Author Index" @default.
- W1501358439 cites W100484353 @default.
- W1501358439 cites W1033546109 @default.
- W1501358439 cites W129935798 @default.
- W1501358439 cites W135420503 @default.
- W1501358439 cites W1500041086 @default.
- W1501358439 cites W15015743 @default.
- W1501358439 cites W1520468186 @default.
- W1501358439 cites W1535516033 @default.
- W1501358439 cites W1569102610 @default.
- W1501358439 cites W16314830 @default.
- W1501358439 cites W1632731003 @default.
- W1501358439 cites W1635818326 @default.
- W1501358439 cites W1649083986 @default.
- W1501358439 cites W1653016124 @default.
- W1501358439 cites W1680892291 @default.
- W1501358439 cites W1963509196 @default.
- W1501358439 cites W1963699483 @default.
- W1501358439 cites W1964203993 @default.
- W1501358439 cites W1964637987 @default.
- W1501358439 cites W1966554723 @default.
- W1501358439 cites W1966835589 @default.
- W1501358439 cites W1967963680 @default.
- W1501358439 cites W1968176250 @default.
- W1501358439 cites W1968297273 @default.
- W1501358439 cites W1969211920 @default.
- W1501358439 cites W1969428562 @default.
- W1501358439 cites W1970600222 @default.
- W1501358439 cites W1970661089 @default.
- W1501358439 cites W1971151756 @default.
- W1501358439 cites W1971419888 @default.
- W1501358439 cites W1971911053 @default.
- W1501358439 cites W1972396064 @default.
- W1501358439 cites W1975068428 @default.
- W1501358439 cites W1976037539 @default.
- W1501358439 cites W1976843300 @default.
- W1501358439 cites W1977113464 @default.
- W1501358439 cites W1977214355 @default.
- W1501358439 cites W1977526009 @default.
- W1501358439 cites W1977577098 @default.
- W1501358439 cites W1978113829 @default.
- W1501358439 cites W1978514254 @default.
- W1501358439 cites W1979076588 @default.
- W1501358439 cites W1979082726 @default.
- W1501358439 cites W1979449993 @default.
- W1501358439 cites W1980342752 @default.
- W1501358439 cites W1980634985 @default.
- W1501358439 cites W1980805255 @default.
- W1501358439 cites W1981059578 @default.
- W1501358439 cites W1982830030 @default.
- W1501358439 cites W1983185103 @default.
- W1501358439 cites W1983255853 @default.
- W1501358439 cites W1983541659 @default.
- W1501358439 cites W1983611135 @default.
- W1501358439 cites W1984574836 @default.
- W1501358439 cites W1985590881 @default.
- W1501358439 cites W1985609078 @default.
- W1501358439 cites W1985731379 @default.
- W1501358439 cites W1985851515 @default.
- W1501358439 cites W1985914932 @default.
- W1501358439 cites W1985997932 @default.
- W1501358439 cites W1986011330 @default.
- W1501358439 cites W1986211347 @default.
- W1501358439 cites W1986399883 @default.
- W1501358439 cites W1986428698 @default.
- W1501358439 cites W1987391352 @default.
- W1501358439 cites W1987933052 @default.
- W1501358439 cites W1987935561 @default.
- W1501358439 cites W1988408870 @default.
- W1501358439 cites W1988899327 @default.
- W1501358439 cites W1989787306 @default.
- W1501358439 cites W1989868128 @default.
- W1501358439 cites W1990840433 @default.
- W1501358439 cites W1991045007 @default.
- W1501358439 cites W1992015651 @default.
- W1501358439 cites W1992523010 @default.
- W1501358439 cites W1992667111 @default.
- W1501358439 cites W1993409120 @default.
- W1501358439 cites W1994143889 @default.
- W1501358439 cites W1994443281 @default.
- W1501358439 cites W1994716620 @default.
- W1501358439 cites W1995092932 @default.
- W1501358439 cites W1995632704 @default.
- W1501358439 cites W1995732523 @default.
- W1501358439 cites W1995819366 @default.
- W1501358439 cites W1997093580 @default.
- W1501358439 cites W1997284294 @default.
- W1501358439 cites W1998091067 @default.
- W1501358439 cites W1998516358 @default.
- W1501358439 cites W1998833769 @default.
- W1501358439 cites W1999332661 @default.
- W1501358439 cites W2000808886 @default.
- W1501358439 cites W2001149830 @default.