Matches in SemOpenAlex for { <https://semopenalex.org/work/W1501441270> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W1501441270 abstract "In this paper, we present a novel approach to the problem of computer-aided analysis of digital mammograms for breast cancer detection. The algorithm developed here classifies mammograms into normal and abnormal. First, the structures in mammograms produced by normal glandular tissue of varying density are eliminated using a wavelet transform (WT) based local average subtraction. Then the linear markings formed by the normal connective tissue are identified and removed. Any abnormality that may exist in the mammogram is therefore enhanced in the residual image, which makes the decision regarding the normality of the mammogram much easier. Statistical descriptors based on high-order statistics derived from the residual image are applied to a probabilistic neural network (PNN) for classification. Using the mammographic data from the Mammographic Image Analysis Society (MIAS) database a recognition score of '71% was achieved." @default.
- W1501441270 created "2016-06-24" @default.
- W1501441270 creator A5012142791 @default.
- W1501441270 creator A5019615830 @default.
- W1501441270 date "2004-07-08" @default.
- W1501441270 modified "2023-10-16" @default.
- W1501441270 title "A neural network method for mammogram analysis ]based on statistical features" @default.
- W1501441270 cites W1981409157 @default.
- W1501441270 cites W2038037430 @default.
- W1501441270 cites W2054105681 @default.
- W1501441270 cites W2057497922 @default.
- W1501441270 cites W2080175555 @default.
- W1501441270 cites W2115628318 @default.
- W1501441270 cites W2117557092 @default.
- W1501441270 cites W2121915221 @default.
- W1501441270 cites W2127955083 @default.
- W1501441270 doi "https://doi.org/10.1109/tencon.2003.1273167" @default.
- W1501441270 hasPublicationYear "2004" @default.
- W1501441270 type Work @default.
- W1501441270 sameAs 1501441270 @default.
- W1501441270 citedByCount "9" @default.
- W1501441270 countsByYear W15014412702017 @default.
- W1501441270 countsByYear W15014412702022 @default.
- W1501441270 crossrefType "proceedings-article" @default.
- W1501441270 hasAuthorship W1501441270A5012142791 @default.
- W1501441270 hasAuthorship W1501441270A5019615830 @default.
- W1501441270 hasConcept C105795698 @default.
- W1501441270 hasConcept C153180895 @default.
- W1501441270 hasConcept C154945302 @default.
- W1501441270 hasConcept C2986587452 @default.
- W1501441270 hasConcept C33923547 @default.
- W1501441270 hasConcept C41008148 @default.
- W1501441270 hasConcept C50644808 @default.
- W1501441270 hasConceptScore W1501441270C105795698 @default.
- W1501441270 hasConceptScore W1501441270C153180895 @default.
- W1501441270 hasConceptScore W1501441270C154945302 @default.
- W1501441270 hasConceptScore W1501441270C2986587452 @default.
- W1501441270 hasConceptScore W1501441270C33923547 @default.
- W1501441270 hasConceptScore W1501441270C41008148 @default.
- W1501441270 hasConceptScore W1501441270C50644808 @default.
- W1501441270 hasLocation W15014412701 @default.
- W1501441270 hasOpenAccess W1501441270 @default.
- W1501441270 hasPrimaryLocation W15014412701 @default.
- W1501441270 hasRelatedWork W1978450727 @default.
- W1501441270 hasRelatedWork W2033914206 @default.
- W1501441270 hasRelatedWork W2146076056 @default.
- W1501441270 hasRelatedWork W2163831990 @default.
- W1501441270 hasRelatedWork W2378160586 @default.
- W1501441270 hasRelatedWork W2386387936 @default.
- W1501441270 hasRelatedWork W2996038082 @default.
- W1501441270 hasRelatedWork W3003836766 @default.
- W1501441270 hasRelatedWork W3107474891 @default.
- W1501441270 hasRelatedWork W4244943737 @default.
- W1501441270 isParatext "false" @default.
- W1501441270 isRetracted "false" @default.
- W1501441270 magId "1501441270" @default.
- W1501441270 workType "article" @default.