Matches in SemOpenAlex for { <https://semopenalex.org/work/W1502064638> ?p ?o ?g. }
- W1502064638 abstract "Technological advances in ultrafast optics now allow the generation of laser pulses whose duration is as short as a few optical cycles of the electric field; furthermore, these pulses can be focused to a spot size comparable to the wavelength. These strongly focused, ultrashort laser pulses have found applications, for instance, in high-resolution microscopy, particle trapping and electron acceleration. In order to characterize the spatiotemporal behavior of such ultrashort, tightly focused pulses, one needs the expressions of their electromagnetic fields. Ultrafast nonparaxial pulsed beams must be modeled as exact solutions to Maxwell's equations. Many studies on the propagation of a pulsed beam are based on a scalar paraxial theory, which provides an accurate description of the pulsed beam propagation when the beam divergence angle is small and the beam spot size is much larger than the wavelength for each spectral component. However, the analysis of tightly focused laser beams requires expressions of optical beams that extend beyond the paraxial approximation. Moreover, the vector nature of light cannot be neglected to properly describe tightly focused beams. Also, the appropriate spectrum amplitude must be employed in order to model ultrashort pulses. Many authors have proposed expressions for the electromagnetic fields of laser pulsed beams, but most of these models are incomplete. For example, Wang and co-workers presented scalar paraxial pulsed Gaussian beams that have a Gaussian spectrum (Wang et al., 1997), but their expressions are not suitable to describe ultrashort pulses, as reported by Porras (Porras, 1998). Caron and Potvliege suggested forms of spectra, which are appropriate to characterize pulses of very small duration, but the expressions for their vectorial nonparaxial ultrashort pulses are written in terms of numerically calculated angular spectra (Caron & Potvliege, 1999). Lin et al. presented closed-form expressions for subcycle pulsed focused vector beams that are exact solutions to Maxwell’s equations obtained in the context of the so-called complex-source point method, but they used an unsuitable Gaussian spectrum (Lin et al., 2006). Recently, an der Brugge and Pukhov have provided solutions for ultrashort focused electromagnetic pulses found with a more appropriate spectral amplitude, but the expressions hold true only in the paraxial regime (an der Brugge & Pukhov, 2009). The aim of this chapter is to provide a simple and complete strategy to correctly model strongly focused, ultrashort laser pulses. Three main tools are employed to find the expressions for the fields of such pulsed beam. First, the Hertz potential method is used in" @default.
- W1502064638 created "2016-06-24" @default.
- W1502064638 creator A5002482261 @default.
- W1502064638 date "2010-11-30" @default.
- W1502064638 modified "2023-09-29" @default.
- W1502064638 title "Ultrashort, Strongly Focused Laser Pulses in Free Space" @default.
- W1502064638 cites W1964082576 @default.
- W1502064638 cites W1968394894 @default.
- W1502064638 cites W1969482941 @default.
- W1502064638 cites W1970823785 @default.
- W1502064638 cites W1971227213 @default.
- W1502064638 cites W1982740034 @default.
- W1502064638 cites W1987189338 @default.
- W1502064638 cites W1990710714 @default.
- W1502064638 cites W1997359397 @default.
- W1502064638 cites W1997881080 @default.
- W1502064638 cites W2003659474 @default.
- W1502064638 cites W2020756681 @default.
- W1502064638 cites W2022058439 @default.
- W1502064638 cites W2023071008 @default.
- W1502064638 cites W2033401401 @default.
- W1502064638 cites W2040473295 @default.
- W1502064638 cites W2040941194 @default.
- W1502064638 cites W2041711427 @default.
- W1502064638 cites W2055503889 @default.
- W1502064638 cites W2059957969 @default.
- W1502064638 cites W2061463433 @default.
- W1502064638 cites W2064365502 @default.
- W1502064638 cites W2064731549 @default.
- W1502064638 cites W2074645965 @default.
- W1502064638 cites W2075543717 @default.
- W1502064638 cites W2101119159 @default.
- W1502064638 cites W2109132062 @default.
- W1502064638 cites W2112840649 @default.
- W1502064638 cites W2131215165 @default.
- W1502064638 cites W2132338383 @default.
- W1502064638 cites W2157725409 @default.
- W1502064638 cites W2163545234 @default.
- W1502064638 cites W2170417583 @default.
- W1502064638 cites W2170825483 @default.
- W1502064638 cites W2227932193 @default.
- W1502064638 cites W2497182898 @default.
- W1502064638 doi "https://doi.org/10.5772/12930" @default.
- W1502064638 hasPublicationYear "2010" @default.
- W1502064638 type Work @default.
- W1502064638 sameAs 1502064638 @default.
- W1502064638 citedByCount "18" @default.
- W1502064638 countsByYear W15020646382013 @default.
- W1502064638 countsByYear W15020646382014 @default.
- W1502064638 countsByYear W15020646382015 @default.
- W1502064638 countsByYear W15020646382016 @default.
- W1502064638 countsByYear W15020646382017 @default.
- W1502064638 countsByYear W15020646382018 @default.
- W1502064638 countsByYear W15020646382019 @default.
- W1502064638 countsByYear W15020646382020 @default.
- W1502064638 countsByYear W15020646382021 @default.
- W1502064638 countsByYear W15020646382022 @default.
- W1502064638 countsByYear W15020646382023 @default.
- W1502064638 crossrefType "book-chapter" @default.
- W1502064638 hasAuthorship W1502064638A5002482261 @default.
- W1502064638 hasBestOaLocation W15020646381 @default.
- W1502064638 hasConcept C120665830 @default.
- W1502064638 hasConcept C121332964 @default.
- W1502064638 hasConcept C146139980 @default.
- W1502064638 hasConcept C168834538 @default.
- W1502064638 hasConcept C169150495 @default.
- W1502064638 hasConcept C178596936 @default.
- W1502064638 hasConcept C179549803 @default.
- W1502064638 hasConcept C2524010 @default.
- W1502064638 hasConcept C2778315978 @default.
- W1502064638 hasConcept C28843909 @default.
- W1502064638 hasConcept C33923547 @default.
- W1502064638 hasConcept C520434653 @default.
- W1502064638 hasConcept C56034020 @default.
- W1502064638 hasConcept C57691317 @default.
- W1502064638 hasConcept C62520636 @default.
- W1502064638 hasConcept C6260449 @default.
- W1502064638 hasConceptScore W1502064638C120665830 @default.
- W1502064638 hasConceptScore W1502064638C121332964 @default.
- W1502064638 hasConceptScore W1502064638C146139980 @default.
- W1502064638 hasConceptScore W1502064638C168834538 @default.
- W1502064638 hasConceptScore W1502064638C169150495 @default.
- W1502064638 hasConceptScore W1502064638C178596936 @default.
- W1502064638 hasConceptScore W1502064638C179549803 @default.
- W1502064638 hasConceptScore W1502064638C2524010 @default.
- W1502064638 hasConceptScore W1502064638C2778315978 @default.
- W1502064638 hasConceptScore W1502064638C28843909 @default.
- W1502064638 hasConceptScore W1502064638C33923547 @default.
- W1502064638 hasConceptScore W1502064638C520434653 @default.
- W1502064638 hasConceptScore W1502064638C56034020 @default.
- W1502064638 hasConceptScore W1502064638C57691317 @default.
- W1502064638 hasConceptScore W1502064638C62520636 @default.
- W1502064638 hasConceptScore W1502064638C6260449 @default.
- W1502064638 hasLocation W15020646381 @default.
- W1502064638 hasLocation W15020646382 @default.
- W1502064638 hasOpenAccess W1502064638 @default.
- W1502064638 hasPrimaryLocation W15020646381 @default.
- W1502064638 hasRelatedWork W1963685062 @default.
- W1502064638 hasRelatedWork W1964082576 @default.
- W1502064638 hasRelatedWork W1985504848 @default.