Matches in SemOpenAlex for { <https://semopenalex.org/work/W1502569980> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1502569980 endingPage "25" @default.
- W1502569980 startingPage "3" @default.
- W1502569980 abstract "This chapter considers how one might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. These technologies offer set theoretic approaches to solving many types of problems where the discovery of similar perceptual granules and clusters of perceptual objects is important. Perceptual information systems (or, more concisely, perceptual systems) provide stepping stones leading to nearness relations and properties of near sets. This work has been motivated by an interest in finding a solution to the problem of discovering perceptual granules that are, in some sense, near each other. Fuzzy sets result from the introduction of a membership function that generalizes the traditional characteristic function. Near set theory provides a formal basis for observation, comparison and classification of perceptual granules. Near sets result from the introduction of a description-based approach to perceptual objects and a generalization of the traditional rough set approach to granulation that is independent of the notion of the boundary of a set approximation. Near set theory has strength by virtue of the strength it gains from rough set theory, starting with extensions of the traditional indiscernibility relation. This chapter has been written to establish a context for three forms of sets that are now part of the computational intelligence umbrella. By way of introduction to near sets, this chapter considers various nearness relations that define partitions of sets of perceptual objects that are near each other. Every perceptual granule is represented by a set of perceptual objects that have their origin in the physical world. Objects that have the same appearance are considered perceptually near each other, i.e., objects with matching descriptions. Pixels, pixel windows, and segmentations of digital images are given by way of illustration of sample near sets. This chapter also briefly considers fuzzy near sets and near fuzzy sets as well as rough sets that are near sets.The main contribution of this chapter is the introduction of a formal foundation for near sets considered in the context of fuzzy sets and rough sets." @default.
- W1502569980 created "2016-06-24" @default.
- W1502569980 creator A5054322944 @default.
- W1502569980 date "2009-01-01" @default.
- W1502569980 modified "2023-09-24" @default.
- W1502569980 title "Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox" @default.
- W1502569980 cites W1480643874 @default.
- W1502569980 cites W1560168699 @default.
- W1502569980 cites W1565627856 @default.
- W1502569980 cites W1567873951 @default.
- W1502569980 cites W1591618909 @default.
- W1502569980 cites W1979029381 @default.
- W1502569980 cites W1987454365 @default.
- W1502569980 cites W2015336432 @default.
- W1502569980 cites W2119722504 @default.
- W1502569980 cites W2129908023 @default.
- W1502569980 cites W2143040521 @default.
- W1502569980 cites W2143451122 @default.
- W1502569980 cites W2570343052 @default.
- W1502569980 cites W4211007335 @default.
- W1502569980 cites W4233751862 @default.
- W1502569980 doi "https://doi.org/10.1007/978-3-642-01533-5_1" @default.
- W1502569980 hasPublicationYear "2009" @default.
- W1502569980 type Work @default.
- W1502569980 sameAs 1502569980 @default.
- W1502569980 citedByCount "11" @default.
- W1502569980 countsByYear W15025699802012 @default.
- W1502569980 countsByYear W15025699802013 @default.
- W1502569980 countsByYear W15025699802018 @default.
- W1502569980 countsByYear W15025699802020 @default.
- W1502569980 countsByYear W15025699802022 @default.
- W1502569980 crossrefType "book-chapter" @default.
- W1502569980 hasAuthorship W1502569980A5054322944 @default.
- W1502569980 hasConcept C111012933 @default.
- W1502569980 hasConcept C124101348 @default.
- W1502569980 hasConcept C139502532 @default.
- W1502569980 hasConcept C154945302 @default.
- W1502569980 hasConcept C169760540 @default.
- W1502569980 hasConcept C17209119 @default.
- W1502569980 hasConcept C177264268 @default.
- W1502569980 hasConcept C199360897 @default.
- W1502569980 hasConcept C25343380 @default.
- W1502569980 hasConcept C26760741 @default.
- W1502569980 hasConcept C2777655017 @default.
- W1502569980 hasConcept C33923547 @default.
- W1502569980 hasConcept C39105242 @default.
- W1502569980 hasConcept C41008148 @default.
- W1502569980 hasConcept C42011625 @default.
- W1502569980 hasConcept C5263885 @default.
- W1502569980 hasConcept C58166 @default.
- W1502569980 hasConcept C80444323 @default.
- W1502569980 hasConcept C86803240 @default.
- W1502569980 hasConceptScore W1502569980C111012933 @default.
- W1502569980 hasConceptScore W1502569980C124101348 @default.
- W1502569980 hasConceptScore W1502569980C139502532 @default.
- W1502569980 hasConceptScore W1502569980C154945302 @default.
- W1502569980 hasConceptScore W1502569980C169760540 @default.
- W1502569980 hasConceptScore W1502569980C17209119 @default.
- W1502569980 hasConceptScore W1502569980C177264268 @default.
- W1502569980 hasConceptScore W1502569980C199360897 @default.
- W1502569980 hasConceptScore W1502569980C25343380 @default.
- W1502569980 hasConceptScore W1502569980C26760741 @default.
- W1502569980 hasConceptScore W1502569980C2777655017 @default.
- W1502569980 hasConceptScore W1502569980C33923547 @default.
- W1502569980 hasConceptScore W1502569980C39105242 @default.
- W1502569980 hasConceptScore W1502569980C41008148 @default.
- W1502569980 hasConceptScore W1502569980C42011625 @default.
- W1502569980 hasConceptScore W1502569980C5263885 @default.
- W1502569980 hasConceptScore W1502569980C58166 @default.
- W1502569980 hasConceptScore W1502569980C80444323 @default.
- W1502569980 hasConceptScore W1502569980C86803240 @default.
- W1502569980 hasLocation W15025699801 @default.
- W1502569980 hasOpenAccess W1502569980 @default.
- W1502569980 hasPrimaryLocation W15025699801 @default.
- W1502569980 hasRelatedWork W2005473715 @default.
- W1502569980 hasRelatedWork W2046691123 @default.
- W1502569980 hasRelatedWork W2067336952 @default.
- W1502569980 hasRelatedWork W2147910870 @default.
- W1502569980 hasRelatedWork W2155262079 @default.
- W1502569980 hasRelatedWork W2359626492 @default.
- W1502569980 hasRelatedWork W3210485020 @default.
- W1502569980 hasRelatedWork W4244328096 @default.
- W1502569980 hasRelatedWork W1795409297 @default.
- W1502569980 hasRelatedWork W2507591177 @default.
- W1502569980 isParatext "false" @default.
- W1502569980 isRetracted "false" @default.
- W1502569980 magId "1502569980" @default.
- W1502569980 workType "book-chapter" @default.