Matches in SemOpenAlex for { <https://semopenalex.org/work/W150434145> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W150434145 abstract "Les decharges a barriere dielectrique (DBD) a la pression atmospherique font partie des plasmas hors-equilibre thermodynamique. Elles peuvent etre operees en mode « filamentaire » ainsi que Townsend. Une des specificites de cette decharge est qu'une electrode (ou les deux) est recouverte par un materiau dielectrique. Generalement, une DBD a la pression atmospherique est une decharge filamentaire, mais en 1968 Bartnikas a rapporte l'existence d'une decharge luminescente uniforme dans He, maintenant dite « Atmospheric Pressure Glow Discharge (APGD)», c'est-a-dire «decharge luminescente a la pression atmospherique », caracterisee par une seule impulsion de courant par demi-cycle de la tension alternative appliquee. Posterieurement, plusieurs chercheurs ont rapporte des decharges homogenes a la pression atmospherique dans d'autres gaz ou melanges gazeux. La majorite des etudes ont ete faites dans He puisqu'il represente un milieu gazeux inerte, c'est-a-dire essentiellement sans reactivite chimique et sans problemes de decomposition, donc un gaz qui peut etre relativement facilement etudie et modelise, au moins en premiere approximation. Parmi les caracteristiques essentielles du plasma, la temperature du gaz est evidemment un parametre tres important a controler. Par exemple, pour le traitement ou modification de materiaux par plasma, une temperature trop elevee peut causer des dommages substantiels, particulierement aux materiaux thermosensibles comme les polymeres.Les objectifs de cette recherche sont : 1) determiner la temperature du gaz dans une APGD d'un gaz rare (He et Ne), en utilisant la spectroscopie d'emission optique (OES), qui a l'avantage d'etre une technique de diagnostique non perturbatrice. Ceci a ete accompli en utilisant le spectre rotationnel provenant du « First Negative System » (FNS) N2+(B2Σu+,ν′=0→X2Σg+,ν′′=0) qui a l'avantage de pouvoir etre resolu meme avec un spectrographe de resolution moyenne. La temperature rotationnelle, Trot, peut alors etre estimee simplement a partir d'un graphique de Boltzmann ; 2) etudier les effets thermiques lies au transfert de chaleur dans ces deux gaz rares, He et Ne ; 3) Finalement, etudier l'evolution spatio-temporelle de l'emission lumineuse provenant des especes excitees dans les decharges de He et Ne, en utilisant une camera numerique ultra-rapide.La decharge APGD faisant l'objet du present travail, est creee entre une electrode plane recouverte d'une mince (1 mm d'epaisseur) lame dielectrique circulaire d'alumine (Al2O3), reliee----------Abstract The purpose of this research has been to measure temperature, T, in dielectric barrier discharges (DBD) using optical emission spectroscopy (OES), which has the great advantage of being non-intrusive and non-perturbing. This is accomplished by analyzing high-resolution rotational bands in the emission spectra of suitable electronically-excited molecular species in the discharge. Several molecules have in the past been used for this purpose, but the most frequently studied are nitrogen bands from the Second Positive System (SPS) of N2 and the First Negative System (FNS) of N2+. In this work, we measure the temperature, T, of dielectric barrier discharges (DBD) in noble gases using OES by analysing rotational bands in the emission spectra of the FNS of N2+. This has the advantage that rotational structure can be fully resolved even with a spectrograph of average performance, and that the rotational temperature, Trot (~ Tgas), can then be determined from a conventional Boltzmann plot. Ionisation of N2 occurs mainly via Penning transfer from metastable excited states of He (ca. 20 eV) or Ne (ca. 16.6 eV). Using a glass-walled DBD chamber of volume 0.1 litter, we have studied atmospheric-pressure discharges in flowing helium (He) or neon (Ne) containing traces of nitrogen. Discharges were excited by audio-frequency (10 kHz) high voltage (HV) using a needle as the HV electrode and a dielectric (alumina)-covered planar grounded counter-electrode. OE spectra were acquired with a 0.5 m focal length spectrograph, coupled to an intensified charge coupled device (ICCD) detector. Using the (0-0) R-branch of the FNS N2+ (B2Σu+ - X2Σg+) bands near a wavelength of 391.4 nm, we have measured axial (inter-electrode) distributions of Trot in both He and Ne. Trot values were found to be highest at the needle electrode, of about 450 K and 740 K for He and Ne, respectively; in He, Trot dropped to a minimum of about 408 K at the mid-gap position. We conclude that temperatures in noble gas discharges depend critically on thermal conductivities of the particular gases (KHe = 1.9; KNe = 0.6, both in mW.cm-1.K-1) and on other experimental factors that influence heat transfer.Even in flows of nominally very pure He or Ne, N2 impurity at the ppm level is sufficient to yield high enough spectral intensity for accurate Trot measurements, Trot increasing linearly with rising N2 flow. We measured the effect of gas flow rate, D, on T in these atmospheric-pressure discharges: D values were varied between ca. 50 and 400 sccm., and they showed that for both gases the temperature at the mid-point in the gap, z = 1.5 mm, dropped near-linearly with rising" @default.
- W150434145 created "2016-06-24" @default.
- W150434145 creator A5029457988 @default.
- W150434145 date "2010-12-01" @default.
- W150434145 modified "2023-09-26" @default.
- W150434145 title "DÉCHARGES À BARRIÈRE DIÉLECTRIQUE DANS L'HÉLIUM ET LE NÉON À LA PRESSION ATMOSPHÉRIQUE" @default.
- W150434145 cites W1479786431 @default.
- W150434145 cites W1515117889 @default.
- W150434145 cites W1535066645 @default.
- W150434145 cites W1560979791 @default.
- W150434145 cites W1561385610 @default.
- W150434145 cites W1592622566 @default.
- W150434145 cites W1813608979 @default.
- W150434145 cites W1967968691 @default.
- W150434145 cites W1969813090 @default.
- W150434145 cites W1969904099 @default.
- W150434145 cites W1983059445 @default.
- W150434145 cites W1986204871 @default.
- W150434145 cites W1991894179 @default.
- W150434145 cites W1995219558 @default.
- W150434145 cites W1998466204 @default.
- W150434145 cites W1998621626 @default.
- W150434145 cites W2002419551 @default.
- W150434145 cites W2011418635 @default.
- W150434145 cites W2011754737 @default.
- W150434145 cites W2013204609 @default.
- W150434145 cites W2023648097 @default.
- W150434145 cites W2029058117 @default.
- W150434145 cites W2034377616 @default.
- W150434145 cites W2044025817 @default.
- W150434145 cites W2045133941 @default.
- W150434145 cites W2045891146 @default.
- W150434145 cites W2046419653 @default.
- W150434145 cites W2047032481 @default.
- W150434145 cites W2047789536 @default.
- W150434145 cites W2048568800 @default.
- W150434145 cites W2058375422 @default.
- W150434145 cites W2062759147 @default.
- W150434145 cites W2066800375 @default.
- W150434145 cites W2076935774 @default.
- W150434145 cites W2078728419 @default.
- W150434145 cites W2080838836 @default.
- W150434145 cites W2081760755 @default.
- W150434145 cites W2082648813 @default.
- W150434145 cites W2082976565 @default.
- W150434145 cites W2083354697 @default.
- W150434145 cites W2083673929 @default.
- W150434145 cites W2085075539 @default.
- W150434145 cites W2086326098 @default.
- W150434145 cites W2091242411 @default.
- W150434145 cites W2092467610 @default.
- W150434145 cites W2099955975 @default.
- W150434145 cites W2109079624 @default.
- W150434145 cites W2114544586 @default.
- W150434145 cites W2115259505 @default.
- W150434145 cites W2115816189 @default.
- W150434145 cites W2122400963 @default.
- W150434145 cites W2126615375 @default.
- W150434145 cites W2128145055 @default.
- W150434145 cites W2131084529 @default.
- W150434145 cites W2133134057 @default.
- W150434145 cites W2140654332 @default.
- W150434145 cites W2150673057 @default.
- W150434145 cites W2155208944 @default.
- W150434145 cites W2158018546 @default.
- W150434145 cites W2166584266 @default.
- W150434145 cites W2167436397 @default.
- W150434145 cites W2656209 @default.
- W150434145 cites W2991885482 @default.
- W150434145 cites W619478253 @default.
- W150434145 cites W66388784 @default.
- W150434145 cites W832145141 @default.
- W150434145 hasPublicationYear "2010" @default.
- W150434145 type Work @default.
- W150434145 sameAs 150434145 @default.
- W150434145 citedByCount "0" @default.
- W150434145 crossrefType "journal-article" @default.
- W150434145 hasAuthorship W150434145A5029457988 @default.
- W150434145 hasConcept C121332964 @default.
- W150434145 hasConcept C138885662 @default.
- W150434145 hasConcept C15708023 @default.
- W150434145 hasConceptScore W150434145C121332964 @default.
- W150434145 hasConceptScore W150434145C138885662 @default.
- W150434145 hasConceptScore W150434145C15708023 @default.
- W150434145 hasLocation W1504341451 @default.
- W150434145 hasOpenAccess W150434145 @default.
- W150434145 hasPrimaryLocation W1504341451 @default.
- W150434145 isParatext "false" @default.
- W150434145 isRetracted "false" @default.
- W150434145 magId "150434145" @default.
- W150434145 workType "article" @default.