Matches in SemOpenAlex for { <https://semopenalex.org/work/W1504974927> ?p ?o ?g. }
- W1504974927 endingPage "198" @default.
- W1504974927 startingPage "189" @default.
- W1504974927 abstract "The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. To precisely classify cancer we have to select genes related to cancer because extracted genes from microarray have many noises. In this paper, we attempt to explore many features and classifiers using three benchmark datasets to systematically evaluate the performances of the feature selection methods and machine learning classifiers. Three benchmark datasets are Leukemia cancer dataset, Colon cancer dataset and Lymphoma cancer data set. Pearson's and Spearman's correlation coefficients, Euclidean distance, cosine coefficient, information gain, mutual information and signal to noise ratio have been used for feature selection. Multi-layer perceptron, k-nearest neighbour, support vector machine and structure adaptive self-organizing map have been used for classification. Also, we have combined the classifiers to improve the performance of classification. Experimental results show that the ensemble with several basis classifiers produces the best recognition rate on the benchmark dataset." @default.
- W1504974927 created "2016-06-24" @default.
- W1504974927 creator A5039633463 @default.
- W1504974927 creator A5044514062 @default.
- W1504974927 date "2003-01-01" @default.
- W1504974927 modified "2023-09-25" @default.
- W1504974927 title "Machine learning in DNA microarray analysis for cancer classification" @default.
- W1504974927 cites W1495929924 @default.
- W1504974927 cites W1549647993 @default.
- W1504974927 cites W1666413479 @default.
- W1504974927 cites W1727290854 @default.
- W1504974927 cites W1769049279 @default.
- W1504974927 cites W1825077972 @default.
- W1504974927 cites W1966701961 @default.
- W1504974927 cites W1969838199 @default.
- W1504974927 cites W1992076386 @default.
- W1504974927 cites W1995806138 @default.
- W1504974927 cites W2083691092 @default.
- W1504974927 cites W2087684630 @default.
- W1504974927 cites W2095594899 @default.
- W1504974927 cites W2101927907 @default.
- W1504974927 cites W2102794349 @default.
- W1504974927 cites W2108728387 @default.
- W1504974927 cites W2109363337 @default.
- W1504974927 cites W2113310577 @default.
- W1504974927 cites W2127544153 @default.
- W1504974927 cites W2129556265 @default.
- W1504974927 cites W2133199783 @default.
- W1504974927 cites W2135187880 @default.
- W1504974927 cites W2137528583 @default.
- W1504974927 cites W2150641058 @default.
- W1504974927 cites W2150926065 @default.
- W1504974927 cites W2156909104 @default.
- W1504974927 cites W2165011536 @default.
- W1504974927 cites W2611104316 @default.
- W1504974927 cites W2611370172 @default.
- W1504974927 cites W2611831635 @default.
- W1504974927 cites W1768935529 @default.
- W1504974927 hasPublicationYear "2003" @default.
- W1504974927 type Work @default.
- W1504974927 sameAs 1504974927 @default.
- W1504974927 citedByCount "84" @default.
- W1504974927 countsByYear W15049749272012 @default.
- W1504974927 countsByYear W15049749272013 @default.
- W1504974927 countsByYear W15049749272014 @default.
- W1504974927 countsByYear W15049749272015 @default.
- W1504974927 countsByYear W15049749272016 @default.
- W1504974927 countsByYear W15049749272017 @default.
- W1504974927 countsByYear W15049749272018 @default.
- W1504974927 countsByYear W15049749272019 @default.
- W1504974927 countsByYear W15049749272020 @default.
- W1504974927 countsByYear W15049749272021 @default.
- W1504974927 crossrefType "proceedings-article" @default.
- W1504974927 hasAuthorship W1504974927A5039633463 @default.
- W1504974927 hasAuthorship W1504974927A5044514062 @default.
- W1504974927 hasConcept C119857082 @default.
- W1504974927 hasConcept C12267149 @default.
- W1504974927 hasConcept C124101348 @default.
- W1504974927 hasConcept C13280743 @default.
- W1504974927 hasConcept C148483581 @default.
- W1504974927 hasConcept C153180895 @default.
- W1504974927 hasConcept C154945302 @default.
- W1504974927 hasConcept C185798385 @default.
- W1504974927 hasConcept C205649164 @default.
- W1504974927 hasConcept C41008148 @default.
- W1504974927 hasConcept C50644808 @default.
- W1504974927 hasConcept C52622490 @default.
- W1504974927 hasConcept C60908668 @default.
- W1504974927 hasConceptScore W1504974927C119857082 @default.
- W1504974927 hasConceptScore W1504974927C12267149 @default.
- W1504974927 hasConceptScore W1504974927C124101348 @default.
- W1504974927 hasConceptScore W1504974927C13280743 @default.
- W1504974927 hasConceptScore W1504974927C148483581 @default.
- W1504974927 hasConceptScore W1504974927C153180895 @default.
- W1504974927 hasConceptScore W1504974927C154945302 @default.
- W1504974927 hasConceptScore W1504974927C185798385 @default.
- W1504974927 hasConceptScore W1504974927C205649164 @default.
- W1504974927 hasConceptScore W1504974927C41008148 @default.
- W1504974927 hasConceptScore W1504974927C50644808 @default.
- W1504974927 hasConceptScore W1504974927C52622490 @default.
- W1504974927 hasConceptScore W1504974927C60908668 @default.
- W1504974927 hasLocation W15049749271 @default.
- W1504974927 hasOpenAccess W1504974927 @default.
- W1504974927 hasPrimaryLocation W15049749271 @default.
- W1504974927 hasRelatedWork W1727290854 @default.
- W1504974927 hasRelatedWork W1966701961 @default.
- W1504974927 hasRelatedWork W2017337590 @default.
- W1504974927 hasRelatedWork W2087684630 @default.
- W1504974927 hasRelatedWork W2088851040 @default.
- W1504974927 hasRelatedWork W2102794349 @default.
- W1504974927 hasRelatedWork W2108728387 @default.
- W1504974927 hasRelatedWork W2109363337 @default.
- W1504974927 hasRelatedWork W2119387367 @default.
- W1504974927 hasRelatedWork W2127544153 @default.
- W1504974927 hasRelatedWork W2128985829 @default.
- W1504974927 hasRelatedWork W2131987814 @default.
- W1504974927 hasRelatedWork W2134932622 @default.
- W1504974927 hasRelatedWork W2137476312 @default.