Matches in SemOpenAlex for { <https://semopenalex.org/work/W1505610561> ?p ?o ?g. }
- W1505610561 endingPage "7762" @default.
- W1505610561 startingPage "7747" @default.
- W1505610561 abstract "Organizing or clustering data into natural groups is one of the most fundamental aspects of understanding and mining information. The recent explosion in sensor networks and data storage associated with hydrological monitoring has created a huge potential for automating data analysis and classification of large, high‐dimensional data sets. In this work, we develop a new classification tool that couples a Naïve Bayesian classifier with a neural network clustering algorithm (i.e., Kohonen Self‐Organizing Map (SOM)). The combined Bayesian‐SOM algorithm reduces classification error by leveraging the Bayesian's ability to accommodate parameter uncertainty with the SOM's ability to reduce high‐dimensional data to lower dimensions. The resulting algorithm is data‐driven, nonparametric and is as computationally efficient as a Naïve Bayesian classifier due to its parallel architecture. We apply, evaluate and test the Bayesian‐SOM network using two real‐world hydrological data sets. The first uses genetic data to classify the state of disease in native fish populations in the upper Madison River, MT, USA. The second uses stream geomorphic and water quality data measured at ∼2500 Vermont stream reaches to predict habitat conditions. The new classification tool has substantial benefits over traditional classification methods due to its ability to dynamically update prior information, assess the uncertainty/confidence of the posterior probability values, and visualize both the input data and resulting probabilistic clusters onto two‐dimensional maps to better assess nonlinear mappings between the two." @default.
- W1505610561 created "2016-06-24" @default.
- W1505610561 creator A5069979435 @default.
- W1505610561 creator A5074921180 @default.
- W1505610561 date "2013-11-01" @default.
- W1505610561 modified "2023-10-06" @default.
- W1505610561 title "Coupling self-organizing maps with a Naïve Bayesian classifier: Stream classification studies using multiple assessment data" @default.
- W1505610561 cites W1479807131 @default.
- W1505610561 cites W1509515766 @default.
- W1505610561 cites W1517886692 @default.
- W1505610561 cites W1524229245 @default.
- W1505610561 cites W1544278534 @default.
- W1505610561 cites W1557483757 @default.
- W1505610561 cites W1577899432 @default.
- W1505610561 cites W1586335931 @default.
- W1505610561 cites W1615993661 @default.
- W1505610561 cites W1616679393 @default.
- W1505610561 cites W1618102973 @default.
- W1505610561 cites W1817561967 @default.
- W1505610561 cites W1861725096 @default.
- W1505610561 cites W1979495695 @default.
- W1505610561 cites W1980501707 @default.
- W1505610561 cites W1990517717 @default.
- W1505610561 cites W1998442441 @default.
- W1505610561 cites W1999608481 @default.
- W1505610561 cites W2005872619 @default.
- W1505610561 cites W2009706584 @default.
- W1505610561 cites W2010150441 @default.
- W1505610561 cites W2011430131 @default.
- W1505610561 cites W2014545696 @default.
- W1505610561 cites W2017540033 @default.
- W1505610561 cites W2019449965 @default.
- W1505610561 cites W2019657798 @default.
- W1505610561 cites W2027165709 @default.
- W1505610561 cites W2035134507 @default.
- W1505610561 cites W2041113710 @default.
- W1505610561 cites W2043284163 @default.
- W1505610561 cites W2043650917 @default.
- W1505610561 cites W2044409426 @default.
- W1505610561 cites W2045668838 @default.
- W1505610561 cites W2048240369 @default.
- W1505610561 cites W2054639185 @default.
- W1505610561 cites W2061938492 @default.
- W1505610561 cites W2063704847 @default.
- W1505610561 cites W2071080899 @default.
- W1505610561 cites W2073057438 @default.
- W1505610561 cites W2076750860 @default.
- W1505610561 cites W2082484980 @default.
- W1505610561 cites W2085302848 @default.
- W1505610561 cites W2086776003 @default.
- W1505610561 cites W2098233760 @default.
- W1505610561 cites W2101706954 @default.
- W1505610561 cites W2101734430 @default.
- W1505610561 cites W2104756394 @default.
- W1505610561 cites W2105030196 @default.
- W1505610561 cites W2109333525 @default.
- W1505610561 cites W2111869883 @default.
- W1505610561 cites W2115570304 @default.
- W1505610561 cites W2118496821 @default.
- W1505610561 cites W2122453796 @default.
- W1505610561 cites W2122538988 @default.
- W1505610561 cites W2124541422 @default.
- W1505610561 cites W2125236599 @default.
- W1505610561 cites W2143533311 @default.
- W1505610561 cites W2152885278 @default.
- W1505610561 cites W2156349124 @default.
- W1505610561 cites W2156771765 @default.
- W1505610561 cites W2159689047 @default.
- W1505610561 cites W2169398645 @default.
- W1505610561 cites W2171209182 @default.
- W1505610561 cites W2488678869 @default.
- W1505610561 cites W3017323153 @default.
- W1505610561 cites W3018770027 @default.
- W1505610561 cites W4205557662 @default.
- W1505610561 cites W65738273 @default.
- W1505610561 doi "https://doi.org/10.1002/2012wr013422" @default.
- W1505610561 hasPublicationYear "2013" @default.
- W1505610561 type Work @default.
- W1505610561 sameAs 1505610561 @default.
- W1505610561 citedByCount "18" @default.
- W1505610561 countsByYear W15056105612015 @default.
- W1505610561 countsByYear W15056105612016 @default.
- W1505610561 countsByYear W15056105612017 @default.
- W1505610561 countsByYear W15056105612018 @default.
- W1505610561 countsByYear W15056105612020 @default.
- W1505610561 countsByYear W15056105612021 @default.
- W1505610561 countsByYear W15056105612022 @default.
- W1505610561 crossrefType "journal-article" @default.
- W1505610561 hasAuthorship W1505610561A5069979435 @default.
- W1505610561 hasAuthorship W1505610561A5074921180 @default.
- W1505610561 hasBestOaLocation W15056105612 @default.
- W1505610561 hasConcept C107673813 @default.
- W1505610561 hasConcept C111168008 @default.
- W1505610561 hasConcept C119857082 @default.
- W1505610561 hasConcept C12267149 @default.
- W1505610561 hasConcept C124101348 @default.
- W1505610561 hasConcept C153180895 @default.
- W1505610561 hasConcept C154945302 @default.