Matches in SemOpenAlex for { <https://semopenalex.org/work/W1506317292> ?p ?o ?g. }
- W1506317292 endingPage "501" @default.
- W1506317292 startingPage "497" @default.
- W1506317292 abstract "The Fdc1 protein from Aspergillus niger (which is homologous to the UbiD enzyme) uses a new prenylated flavin cofactor to achieve 1,3-dipolar cycloaddition chemistry and catalyse the reversible decarboxylation of aromatic carboxylic acids. A pair of manuscripts published this week [in this issue of Nature] describes detailed studies of the structure and mechanism of the enzymes UbiD and UbiX that together are responsible for non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone biosynthesis and microbial biodegradation of aromatic compounds. Mark White et al. show that UbiX is a flavin prenyltransferase, catalysing the covalent attachment of a fourth ring (the dimethylallyl group) to the N5 and C6 atoms of the three-ring riboflavin system. The unusual flavin-derived cofactor synthesized by UbiX is then used by UbiD, a decarboxylase, in the next step of the ubiquinone biosynthetic pathway. Karl Payne et al. show that the Fdc protein from Aspergillus niger (which is homologous to UbiD) uses 1,3-dipolar cycloaddition chemistry to catalyse the reversible decarboxylation of aromatic carboxylic acids. This is the first example of an enzyme-catalysed 1,3-dipolar cycloaddition reaction. The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis1,2,3 or microbial biodegradation of aromatic compounds4,5,6, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear7,8,9. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad110. Atomic resolution crystal structures reveal that two distinct isomers of the oxidized cofactor can be observed, an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with markedly altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor–cofactor adduct suggests that 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. Although 1,3-dipolar cycloaddition is commonly used in organic chemistry11,12, we propose that this presents the first example, to our knowledge, of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc1/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation." @default.
- W1506317292 created "2016-06-24" @default.
- W1506317292 creator A5004792265 @default.
- W1506317292 creator A5008637684 @default.
- W1506317292 creator A5027487636 @default.
- W1506317292 creator A5040164861 @default.
- W1506317292 creator A5057904870 @default.
- W1506317292 creator A5058612126 @default.
- W1506317292 creator A5059655543 @default.
- W1506317292 creator A5059684811 @default.
- W1506317292 creator A5059752371 @default.
- W1506317292 creator A5060542334 @default.
- W1506317292 creator A5067071834 @default.
- W1506317292 creator A5068146676 @default.
- W1506317292 creator A5076071353 @default.
- W1506317292 creator A5080641162 @default.
- W1506317292 creator A5089741622 @default.
- W1506317292 date "2015-06-17" @default.
- W1506317292 modified "2023-10-01" @default.
- W1506317292 title "New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition" @default.
- W1506317292 cites W104809382 @default.
- W1506317292 cites W1579366804 @default.
- W1506317292 cites W1847611580 @default.
- W1506317292 cites W1848034425 @default.
- W1506317292 cites W1969722144 @default.
- W1506317292 cites W1969929416 @default.
- W1506317292 cites W1978536813 @default.
- W1506317292 cites W1983082406 @default.
- W1506317292 cites W1984989676 @default.
- W1506317292 cites W1986561368 @default.
- W1506317292 cites W1988647429 @default.
- W1506317292 cites W1988918547 @default.
- W1506317292 cites W1991096030 @default.
- W1506317292 cites W2012457974 @default.
- W1506317292 cites W2015642465 @default.
- W1506317292 cites W2017003462 @default.
- W1506317292 cites W2018538193 @default.
- W1506317292 cites W2021013969 @default.
- W1506317292 cites W2022982860 @default.
- W1506317292 cites W2042922385 @default.
- W1506317292 cites W2074580449 @default.
- W1506317292 cites W2079791488 @default.
- W1506317292 cites W2101953984 @default.
- W1506317292 cites W2108921801 @default.
- W1506317292 cites W2114902713 @default.
- W1506317292 cites W2120056986 @default.
- W1506317292 cites W2130775475 @default.
- W1506317292 cites W2137401523 @default.
- W1506317292 cites W2142576918 @default.
- W1506317292 cites W2156602461 @default.
- W1506317292 cites W2157990032 @default.
- W1506317292 cites W2167241620 @default.
- W1506317292 cites W2167913729 @default.
- W1506317292 cites W2170686066 @default.
- W1506317292 cites W2949768043 @default.
- W1506317292 cites W4248872320 @default.
- W1506317292 doi "https://doi.org/10.1038/nature14560" @default.
- W1506317292 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4988494" @default.
- W1506317292 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26083754" @default.
- W1506317292 hasPublicationYear "2015" @default.
- W1506317292 type Work @default.
- W1506317292 sameAs 1506317292 @default.
- W1506317292 citedByCount "185" @default.
- W1506317292 countsByYear W15063172922015 @default.
- W1506317292 countsByYear W15063172922016 @default.
- W1506317292 countsByYear W15063172922017 @default.
- W1506317292 countsByYear W15063172922018 @default.
- W1506317292 countsByYear W15063172922019 @default.
- W1506317292 countsByYear W15063172922020 @default.
- W1506317292 countsByYear W15063172922021 @default.
- W1506317292 countsByYear W15063172922022 @default.
- W1506317292 countsByYear W15063172922023 @default.
- W1506317292 crossrefType "journal-article" @default.
- W1506317292 hasAuthorship W1506317292A5004792265 @default.
- W1506317292 hasAuthorship W1506317292A5008637684 @default.
- W1506317292 hasAuthorship W1506317292A5027487636 @default.
- W1506317292 hasAuthorship W1506317292A5040164861 @default.
- W1506317292 hasAuthorship W1506317292A5057904870 @default.
- W1506317292 hasAuthorship W1506317292A5058612126 @default.
- W1506317292 hasAuthorship W1506317292A5059655543 @default.
- W1506317292 hasAuthorship W1506317292A5059684811 @default.
- W1506317292 hasAuthorship W1506317292A5059752371 @default.
- W1506317292 hasAuthorship W1506317292A5060542334 @default.
- W1506317292 hasAuthorship W1506317292A5067071834 @default.
- W1506317292 hasAuthorship W1506317292A5068146676 @default.
- W1506317292 hasAuthorship W1506317292A5076071353 @default.
- W1506317292 hasAuthorship W1506317292A5080641162 @default.
- W1506317292 hasAuthorship W1506317292A5089741622 @default.
- W1506317292 hasBestOaLocation W15063172922 @default.
- W1506317292 hasConcept C161790260 @default.
- W1506317292 hasConcept C181199279 @default.
- W1506317292 hasConcept C185592680 @default.
- W1506317292 hasConcept C197957613 @default.
- W1506317292 hasConcept C2775859393 @default.
- W1506317292 hasConcept C2779634684 @default.
- W1506317292 hasConcept C2779664164 @default.
- W1506317292 hasConcept C2780595602 @default.
- W1506317292 hasConcept C33093398 @default.