Matches in SemOpenAlex for { <https://semopenalex.org/work/W1506431708> ?p ?o ?g. }
- W1506431708 abstract "Facial analysis and recognition have received substential attention from researchers in biometrics, pattern recognition, and computer vision communities. They have a large number of applications, such as security, communication, and entertainment. Although a great deal of efforts has been devoted to automated face recognition systems, it still remains a challenging uncertainty problem. This is because human facial appearance has potentially of very large intra-subject variations of head pose, illumination, facial expression, occlusion due to other objects or accessories, facial hair and aging. These misleading variations may cause classifiers to degrade generalization performance. It is important for face recognition systems to employ an effective feature extraction scheme to enhance separability between pattern classes which should maintain and enhance features of the input data that make distinct pattern classes separable (Jan, 2004). In general, there exist a number of different feature extraction methods. The most common feature extraction methods are subspace analysis methods such as principle component analysis (PCA) (Kirby & Sirovich, 1990) (Jolliffe, 1986) (Turk & Pentland, 1991b), kernel principle component analysis (KPCA) (Scholkopf et al., 1998) (Kim et al., 2002) (all of which extract the most informative features and reduce the feature dimensionality), Fisher’s linear discriminant analysis (FLD) (Duda et al., 2000) (Belhumeur et al., 1997), and kernel Fisher’s discriminant analysis (KFLD) (Mika et al., 1999) (Scholkopf & Smola, 2002) (which discriminate different patterns; that is, they minimize the intra-class pattern compactness while enhancing the extra-class separability). The discriminant analysis is necessary because the patterns may overlap in decision space. Recently, Lu et al. (Lu et al., 2003) stated that PCA and LDA are the most widely used conventional tools for dimensionality reduction and feature extraction in the appearancebased face recognition. However, because facial features are naturally non-linear and the inherent linear nature of PCA and LDA, there are some limitations when applying these methods to the facial data distribution (Bichsel & Pentland, 1994) (Lu et al., 2003). To overcome such problems, nonlinear methods can be applied to better construct the most discriminative subspace. In real world applications, overlapping classes and various environmental variations can significantly impact face recognition accuracy and robustness. Such misleading information make Machine Learning difficult in modelling facial data. According to Adini et al. (Adini et al., 1997), it is desirable to have a recognition system which is able to recognize a face insensitive to these within-personal variations. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg" @default.
- W1506431708 created "2016-06-24" @default.
- W1506431708 creator A5021688921 @default.
- W1506431708 creator A5048239546 @default.
- W1506431708 creator A5051271856 @default.
- W1506431708 creator A5066672790 @default.
- W1506431708 date "2008-06-01" @default.
- W1506431708 modified "2023-10-03" @default.
- W1506431708 title "Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition" @default.
- W1506431708 cites W1515034693 @default.
- W1506431708 cites W1539550676 @default.
- W1506431708 cites W1544324307 @default.
- W1506431708 cites W1554663460 @default.
- W1506431708 cites W1560724230 @default.
- W1506431708 cites W1968773332 @default.
- W1506431708 cites W1970317683 @default.
- W1506431708 cites W1971865497 @default.
- W1506431708 cites W2021012145 @default.
- W1506431708 cites W2021127571 @default.
- W1506431708 cites W2022714560 @default.
- W1506431708 cites W2028631142 @default.
- W1506431708 cites W2033773055 @default.
- W1506431708 cites W2038350280 @default.
- W1506431708 cites W2077939671 @default.
- W1506431708 cites W2096044434 @default.
- W1506431708 cites W2098693229 @default.
- W1506431708 cites W2099634219 @default.
- W1506431708 cites W2100281586 @default.
- W1506431708 cites W2101965618 @default.
- W1506431708 cites W2102322178 @default.
- W1506431708 cites W2106115875 @default.
- W1506431708 cites W2106390385 @default.
- W1506431708 cites W2107369107 @default.
- W1506431708 cites W2109774206 @default.
- W1506431708 cites W2111146558 @default.
- W1506431708 cites W2120885766 @default.
- W1506431708 cites W2121647436 @default.
- W1506431708 cites W2129407254 @default.
- W1506431708 cites W2130845522 @default.
- W1506431708 cites W2133180260 @default.
- W1506431708 cites W2135463994 @default.
- W1506431708 cites W2138451337 @default.
- W1506431708 cites W2140095548 @default.
- W1506431708 cites W2140351517 @default.
- W1506431708 cites W2143304877 @default.
- W1506431708 cites W2144143728 @default.
- W1506431708 cites W2147736639 @default.
- W1506431708 cites W2149310201 @default.
- W1506431708 cites W2150796457 @default.
- W1506431708 cites W2158114849 @default.
- W1506431708 cites W2159017231 @default.
- W1506431708 cites W2160947254 @default.
- W1506431708 cites W2162021932 @default.
- W1506431708 cites W2163280874 @default.
- W1506431708 cites W2167955297 @default.
- W1506431708 cites W2172803778 @default.
- W1506431708 cites W2479089353 @default.
- W1506431708 cites W2500846359 @default.
- W1506431708 cites W2502896360 @default.
- W1506431708 cites W2799061466 @default.
- W1506431708 cites W2931598930 @default.
- W1506431708 cites W3195149063 @default.
- W1506431708 doi "https://doi.org/10.5772/6400" @default.
- W1506431708 hasPublicationYear "2008" @default.
- W1506431708 type Work @default.
- W1506431708 sameAs 1506431708 @default.
- W1506431708 citedByCount "0" @default.
- W1506431708 crossrefType "book-chapter" @default.
- W1506431708 hasAuthorship W1506431708A5021688921 @default.
- W1506431708 hasAuthorship W1506431708A5048239546 @default.
- W1506431708 hasAuthorship W1506431708A5051271856 @default.
- W1506431708 hasAuthorship W1506431708A5066672790 @default.
- W1506431708 hasBestOaLocation W15064317081 @default.
- W1506431708 hasConcept C153180895 @default.
- W1506431708 hasConcept C154945302 @default.
- W1506431708 hasConcept C15744967 @default.
- W1506431708 hasConcept C28490314 @default.
- W1506431708 hasConcept C32834561 @default.
- W1506431708 hasConcept C33923547 @default.
- W1506431708 hasConcept C41008148 @default.
- W1506431708 hasConcept C69738355 @default.
- W1506431708 hasConcept C78397625 @default.
- W1506431708 hasConceptScore W1506431708C153180895 @default.
- W1506431708 hasConceptScore W1506431708C154945302 @default.
- W1506431708 hasConceptScore W1506431708C15744967 @default.
- W1506431708 hasConceptScore W1506431708C28490314 @default.
- W1506431708 hasConceptScore W1506431708C32834561 @default.
- W1506431708 hasConceptScore W1506431708C33923547 @default.
- W1506431708 hasConceptScore W1506431708C41008148 @default.
- W1506431708 hasConceptScore W1506431708C69738355 @default.
- W1506431708 hasConceptScore W1506431708C78397625 @default.
- W1506431708 hasLocation W15064317081 @default.
- W1506431708 hasOpenAccess W1506431708 @default.
- W1506431708 hasPrimaryLocation W15064317081 @default.
- W1506431708 hasRelatedWork W1510561540 @default.
- W1506431708 hasRelatedWork W1998938004 @default.
- W1506431708 hasRelatedWork W2067378131 @default.
- W1506431708 hasRelatedWork W2120745393 @default.
- W1506431708 hasRelatedWork W2134569917 @default.
- W1506431708 hasRelatedWork W2146076056 @default.