Matches in SemOpenAlex for { <https://semopenalex.org/work/W1506472271> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W1506472271 abstract "Abstract : The research under this project was aimed at developing numerical methods for fitting stochastic partial differential equations to irregularly spaced spatial data. This is related to two dimensional smoothing spline fitting where the partial differential equation is the Laplacian driven by white noise. A class of continuous two dimensional spatial autoregressive, moving average (ARMA) models were investigated and numerical methods developed to implement fitting these models to spatial data. The spatial ARMA models provide a complete class of covariance structures rather than a very limited set of covariance functions that are typically used in Kriging. Since maximum likelihood methods are used to fit the models, methods such as likelihood ratio tests and Akaike's Information Criterion (AIC) can be used for model selection. Prediction maps can then be calculated at a grid of points, and contour maps drawn. Also maps can be drawn of the standard deviation of the predicted fields giving indications of the variability of the predictions. Applications include aquifer heights, coal field depth and thickness and snowfall amounts. Results have been presented in a number of presentations and publications." @default.
- W1506472271 created "2016-06-24" @default.
- W1506472271 creator A5088742899 @default.
- W1506472271 date "1993-09-30" @default.
- W1506472271 modified "2023-10-16" @default.
- W1506472271 title "Fitting Stochastic Partial Differential Equations to Spatial Data" @default.
- W1506472271 doi "https://doi.org/10.21236/ada279870" @default.
- W1506472271 hasPublicationYear "1993" @default.
- W1506472271 type Work @default.
- W1506472271 sameAs 1506472271 @default.
- W1506472271 citedByCount "0" @default.
- W1506472271 crossrefType "report" @default.
- W1506472271 hasAuthorship W1506472271A5088742899 @default.
- W1506472271 hasConcept C134306372 @default.
- W1506472271 hasConcept C28826006 @default.
- W1506472271 hasConcept C33923547 @default.
- W1506472271 hasConcept C41008148 @default.
- W1506472271 hasConcept C84629840 @default.
- W1506472271 hasConcept C93779851 @default.
- W1506472271 hasConceptScore W1506472271C134306372 @default.
- W1506472271 hasConceptScore W1506472271C28826006 @default.
- W1506472271 hasConceptScore W1506472271C33923547 @default.
- W1506472271 hasConceptScore W1506472271C41008148 @default.
- W1506472271 hasConceptScore W1506472271C84629840 @default.
- W1506472271 hasConceptScore W1506472271C93779851 @default.
- W1506472271 hasLocation W15064722711 @default.
- W1506472271 hasOpenAccess W1506472271 @default.
- W1506472271 hasPrimaryLocation W15064722711 @default.
- W1506472271 hasRelatedWork W1993700123 @default.
- W1506472271 hasRelatedWork W1999974591 @default.
- W1506472271 hasRelatedWork W2018019014 @default.
- W1506472271 hasRelatedWork W2056734540 @default.
- W1506472271 hasRelatedWork W2093851698 @default.
- W1506472271 hasRelatedWork W2326704909 @default.
- W1506472271 hasRelatedWork W2735510078 @default.
- W1506472271 hasRelatedWork W2952189774 @default.
- W1506472271 hasRelatedWork W3175896983 @default.
- W1506472271 hasRelatedWork W4299787359 @default.
- W1506472271 isParatext "false" @default.
- W1506472271 isRetracted "false" @default.
- W1506472271 magId "1506472271" @default.
- W1506472271 workType "report" @default.