Matches in SemOpenAlex for { <https://semopenalex.org/work/W150677147> ?p ?o ?g. }
- W150677147 abstract "We provide a matrix factorization model for the derived internal Hom(continuous), in the homotopy category of k-linear dg-categories, betweencategories of graded matrix factorizations. This description is used tocalculate the derived natural transformations between twists functors oncategories of graded matrix factorizations. Furthermore, we combine our modelwith a theorem of Orlov to establish a geometric picture related toKontsevich's Homological Mirror Symmetry Conjecture. As applications, we obtainnew cases of a conjecture of Orlov concerning the Rouquier dimension of thebounded derived category of coherent sheaves on a smooth variety and a proof ofthe Hodge conjecture for n-fold products of a K3 surface closely related to theFermat cubic fourfold. We also introduce Noether-Lefschetz spectra as a newMorita invariant of dg-categories. They are intended to encode informationabout algebraic classes in the cohomology on an algebraic variety." @default.
- W150677147 created "2016-06-24" @default.
- W150677147 creator A5020552553 @default.
- W150677147 creator A5067549542 @default.
- W150677147 creator A5078793440 @default.
- W150677147 date "2011-05-16" @default.
- W150677147 modified "2023-09-27" @default.
- W150677147 title "A category of kernels for graded matrix factorizations and its implications for Hodge theory" @default.
- W150677147 cites W1495410784 @default.
- W150677147 cites W1498536679 @default.
- W150677147 cites W1516373697 @default.
- W150677147 cites W1531746050 @default.
- W150677147 cites W1547092953 @default.
- W150677147 cites W1548944036 @default.
- W150677147 cites W1562477161 @default.
- W150677147 cites W1570670555 @default.
- W150677147 cites W1583674858 @default.
- W150677147 cites W1593607301 @default.
- W150677147 cites W1595937157 @default.
- W150677147 cites W1606096871 @default.
- W150677147 cites W1655075947 @default.
- W150677147 cites W1663061478 @default.
- W150677147 cites W1669020267 @default.
- W150677147 cites W1679634923 @default.
- W150677147 cites W1796115931 @default.
- W150677147 cites W1838536507 @default.
- W150677147 cites W1888455076 @default.
- W150677147 cites W1898649608 @default.
- W150677147 cites W1922438222 @default.
- W150677147 cites W1945612516 @default.
- W150677147 cites W1964040802 @default.
- W150677147 cites W1965443691 @default.
- W150677147 cites W1972345972 @default.
- W150677147 cites W1985274617 @default.
- W150677147 cites W1986546200 @default.
- W150677147 cites W1989030335 @default.
- W150677147 cites W1999297192 @default.
- W150677147 cites W1999646078 @default.
- W150677147 cites W2006790140 @default.
- W150677147 cites W2008218939 @default.
- W150677147 cites W2011149060 @default.
- W150677147 cites W2016792663 @default.
- W150677147 cites W2020821455 @default.
- W150677147 cites W2021350669 @default.
- W150677147 cites W2022713330 @default.
- W150677147 cites W2022786126 @default.
- W150677147 cites W2027265410 @default.
- W150677147 cites W2028625054 @default.
- W150677147 cites W2030024894 @default.
- W150677147 cites W2035259373 @default.
- W150677147 cites W2038087689 @default.
- W150677147 cites W2040548871 @default.
- W150677147 cites W2041690299 @default.
- W150677147 cites W2041777191 @default.
- W150677147 cites W2045787135 @default.
- W150677147 cites W2047413546 @default.
- W150677147 cites W2048079871 @default.
- W150677147 cites W2048186646 @default.
- W150677147 cites W2051427907 @default.
- W150677147 cites W2056381429 @default.
- W150677147 cites W2057802669 @default.
- W150677147 cites W2058277221 @default.
- W150677147 cites W2065612708 @default.
- W150677147 cites W2071417479 @default.
- W150677147 cites W2074538029 @default.
- W150677147 cites W2077881605 @default.
- W150677147 cites W2079378892 @default.
- W150677147 cites W2095956526 @default.
- W150677147 cites W2097117134 @default.
- W150677147 cites W2102916790 @default.
- W150677147 cites W2110813335 @default.
- W150677147 cites W2114536762 @default.
- W150677147 cites W2115166069 @default.
- W150677147 cites W2116968704 @default.
- W150677147 cites W2124995166 @default.
- W150677147 cites W2133314243 @default.
- W150677147 cites W2149488187 @default.
- W150677147 cites W2157365998 @default.
- W150677147 cites W2159924184 @default.
- W150677147 cites W2161579213 @default.
- W150677147 cites W2167050414 @default.
- W150677147 cites W2167791892 @default.
- W150677147 cites W2241115659 @default.
- W150677147 cites W2317070658 @default.
- W150677147 cites W2371848053 @default.
- W150677147 cites W2482454902 @default.
- W150677147 cites W2573348363 @default.
- W150677147 cites W2591923352 @default.
- W150677147 cites W2609033310 @default.
- W150677147 cites W2737877103 @default.
- W150677147 cites W2953320413 @default.
- W150677147 cites W2962771980 @default.
- W150677147 cites W2962788309 @default.
- W150677147 cites W2962903290 @default.
- W150677147 cites W2963103775 @default.
- W150677147 cites W2963450458 @default.
- W150677147 cites W2963523821 @default.
- W150677147 cites W2963526388 @default.
- W150677147 cites W2963570293 @default.
- W150677147 cites W2963829604 @default.