Matches in SemOpenAlex for { <https://semopenalex.org/work/W1508045242> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1508045242 endingPage "780" @default.
- W1508045242 startingPage "767" @default.
- W1508045242 abstract "Contrary to standard statistical models, unnormalised statistical models only specify the likelihood function up to a constant. While such models are natural and popular, the lack of normalisation makes inference much more difficult. Extending classical results on the multinomial-Poisson transform (Baker In: J Royal Stat Soc 43(4):495–504, 1994), we show that inferring the parameters of a unnormalised model on a space $$Omega $$ can be mapped onto an equivalent problem of estimating the intensity of a Poisson point process on $$Omega $$ . The unnormalised statistical model now specifies an intensity function that does not need to be normalised. Effectively, the normalisation constant may now be inferred as just another parameter, at no loss of information. The result can be extended to cover non-IID models, which includes for example unnormalised models for sequences of graphs (dynamical graphs), or for sequences of binary vectors. As a consequence, we prove that unnormalised parameteric inference in non-IID models can be turned into a semi-parametric estimation problem. Moreover, we show that the noise-contrastive estimation method of Gutmann and Hyvärinen (J Mach Learn Res 13(1):307–361, 2012) can be understood as an approximation of the Poisson transform, and extended to non-IID settings. We use our results to fit spatial Markov chain models of eye movements, where the Poisson transform allows us to turn a highly non-standard model into vanilla semi-parametric logistic regression." @default.
- W1508045242 created "2016-06-24" @default.
- W1508045242 creator A5047627660 @default.
- W1508045242 creator A5049392160 @default.
- W1508045242 date "2015-06-11" @default.
- W1508045242 modified "2023-09-25" @default.
- W1508045242 title "The Poisson transform for unnormalised statistical models" @default.
- W1508045242 cites W1680396847 @default.
- W1508045242 cites W1963733315 @default.
- W1508045242 cites W1979722281 @default.
- W1508045242 cites W2006201641 @default.
- W1508045242 cites W2027582596 @default.
- W1508045242 cites W2079919087 @default.
- W1508045242 cites W2079951583 @default.
- W1508045242 cites W2097865464 @default.
- W1508045242 cites W2104295831 @default.
- W1508045242 cites W2114358147 @default.
- W1508045242 cites W2116064496 @default.
- W1508045242 cites W2119160928 @default.
- W1508045242 cites W2125280835 @default.
- W1508045242 cites W2127064485 @default.
- W1508045242 cites W2145677862 @default.
- W1508045242 cites W2156740722 @default.
- W1508045242 cites W4298870098 @default.
- W1508045242 doi "https://doi.org/10.1007/s11222-015-9559-4" @default.
- W1508045242 hasPublicationYear "2015" @default.
- W1508045242 type Work @default.
- W1508045242 sameAs 1508045242 @default.
- W1508045242 citedByCount "6" @default.
- W1508045242 countsByYear W15080452422015 @default.
- W1508045242 countsByYear W15080452422016 @default.
- W1508045242 countsByYear W15080452422017 @default.
- W1508045242 countsByYear W15080452422018 @default.
- W1508045242 countsByYear W15080452422020 @default.
- W1508045242 crossrefType "journal-article" @default.
- W1508045242 hasAuthorship W1508045242A5047627660 @default.
- W1508045242 hasAuthorship W1508045242A5049392160 @default.
- W1508045242 hasBestOaLocation W15080452425 @default.
- W1508045242 hasConcept C100906024 @default.
- W1508045242 hasConcept C105795698 @default.
- W1508045242 hasConcept C11413529 @default.
- W1508045242 hasConcept C114289077 @default.
- W1508045242 hasConcept C134261354 @default.
- W1508045242 hasConcept C28826006 @default.
- W1508045242 hasConcept C33643355 @default.
- W1508045242 hasConcept C33923547 @default.
- W1508045242 hasConcept C91025261 @default.
- W1508045242 hasConcept C98763669 @default.
- W1508045242 hasConceptScore W1508045242C100906024 @default.
- W1508045242 hasConceptScore W1508045242C105795698 @default.
- W1508045242 hasConceptScore W1508045242C11413529 @default.
- W1508045242 hasConceptScore W1508045242C114289077 @default.
- W1508045242 hasConceptScore W1508045242C134261354 @default.
- W1508045242 hasConceptScore W1508045242C28826006 @default.
- W1508045242 hasConceptScore W1508045242C33643355 @default.
- W1508045242 hasConceptScore W1508045242C33923547 @default.
- W1508045242 hasConceptScore W1508045242C91025261 @default.
- W1508045242 hasConceptScore W1508045242C98763669 @default.
- W1508045242 hasIssue "4" @default.
- W1508045242 hasLocation W15080452421 @default.
- W1508045242 hasLocation W15080452422 @default.
- W1508045242 hasLocation W15080452423 @default.
- W1508045242 hasLocation W15080452424 @default.
- W1508045242 hasLocation W15080452425 @default.
- W1508045242 hasLocation W15080452426 @default.
- W1508045242 hasOpenAccess W1508045242 @default.
- W1508045242 hasPrimaryLocation W15080452421 @default.
- W1508045242 hasRelatedWork W1562077703 @default.
- W1508045242 hasRelatedWork W2117309211 @default.
- W1508045242 hasRelatedWork W2117733230 @default.
- W1508045242 hasRelatedWork W2129537379 @default.
- W1508045242 hasRelatedWork W2246372156 @default.
- W1508045242 hasRelatedWork W2971731486 @default.
- W1508045242 hasRelatedWork W3011959070 @default.
- W1508045242 hasRelatedWork W3210390693 @default.
- W1508045242 hasRelatedWork W4210946940 @default.
- W1508045242 hasRelatedWork W4280505828 @default.
- W1508045242 hasVolume "25" @default.
- W1508045242 isParatext "false" @default.
- W1508045242 isRetracted "false" @default.
- W1508045242 magId "1508045242" @default.
- W1508045242 workType "article" @default.