Matches in SemOpenAlex for { <https://semopenalex.org/work/W1508096213> ?p ?o ?g. }
- W1508096213 abstract "This thesis presents the development of a new multi-objective optimisation tool and applies it to a number of industrial problems related to optimising energy systems. Multi-objective optimisation techniques provide the information needed for detailed analyses of design trade-offs between conflicting objectives. For example, if a product must be both inexpensive and high quality, the multi-objective optimiser will provide a range of optimal options from the cheapest (but lowest quality) alternative to the highest quality (but most expensive), and a range of designs in between – those that are the most interesting to the decision-maker. The optimisation tool developed is the queueing multi-objective optimiser (QMOO), an evolutionary algorithm (EA). EAs are particularly suited to multi-objective optimisation because they work with a population of potential solutions, each representing a different trade-off between objectives. EAs are ideal to energy system optimisation because problems from that domain are often non-linear, discontinuous, disjoint, and multi-modal. These features make energy system optimisation problems difficult to resolve with other optimisation techniques. QMOO has several features that improve its performance on energy systems problems – features that are applicable to a wide range of optimisation problems. QMOO uses cluster analysis techniques to identify separate local optima simultaneously. This technique preserves diversity and helps convergence to difficult-to-find optima. Once normal dominance relations no longer discriminate sufficiently between population members certain individuals are chosen and removed from the population. Careful choice of the individuals to be removed ensures that convergence continues throughout the optimisation. Preserving of the tail regions of the population helps the algorithm to explore the full extent of the problem's optimal regions. QMOO is applied to a number of problems: coke factory placement in Shanxi Province, China; choice of heat recovery system operating temperatures; design of heat-exchanger networks; hybrid vehicle configuration; district heating network design, and others. Several of the problems were optimised previously using single-objective EAs. QMOO proved capable of finding entire ranges of solutions faster than the earlier methods found a single solution. In most cases, QMOO successfully optimises the problems without requiring any specific tuning to each problem. QMOO is also tested on a number of test problems found in the literature. QMOO's techniques for improving convergence prove effective on these problems, and its non-tuned performance is excellent compared to other algorithms found in the literature." @default.
- W1508096213 created "2016-06-24" @default.
- W1508096213 creator A5053949022 @default.
- W1508096213 date "2002-01-01" @default.
- W1508096213 modified "2023-09-23" @default.
- W1508096213 title "Multi-objective optimisation applied to industrial energy problems" @default.
- W1508096213 cites W102335110 @default.
- W1508096213 cites W110363827 @default.
- W1508096213 cites W119026255 @default.
- W1508096213 cites W129902424 @default.
- W1508096213 cites W1487947538 @default.
- W1508096213 cites W1489417573 @default.
- W1508096213 cites W1497256448 @default.
- W1508096213 cites W1498189138 @default.
- W1508096213 cites W1508543123 @default.
- W1508096213 cites W1514875444 @default.
- W1508096213 cites W1520732519 @default.
- W1508096213 cites W1529571708 @default.
- W1508096213 cites W1554150096 @default.
- W1508096213 cites W1560329561 @default.
- W1508096213 cites W156440851 @default.
- W1508096213 cites W1565902586 @default.
- W1508096213 cites W1568060144 @default.
- W1508096213 cites W1572960541 @default.
- W1508096213 cites W1573669896 @default.
- W1508096213 cites W1582207801 @default.
- W1508096213 cites W1585335425 @default.
- W1508096213 cites W1585939719 @default.
- W1508096213 cites W1590935803 @default.
- W1508096213 cites W1593549813 @default.
- W1508096213 cites W1594830546 @default.
- W1508096213 cites W1595498733 @default.
- W1508096213 cites W1607269219 @default.
- W1508096213 cites W1686734894 @default.
- W1508096213 cites W1804820197 @default.
- W1508096213 cites W180797010 @default.
- W1508096213 cites W1888731889 @default.
- W1508096213 cites W1890782721 @default.
- W1508096213 cites W1905847227 @default.
- W1508096213 cites W1907795 @default.
- W1508096213 cites W193155883 @default.
- W1508096213 cites W1957430778 @default.
- W1508096213 cites W19646579 @default.
- W1508096213 cites W1966253115 @default.
- W1508096213 cites W1972273389 @default.
- W1508096213 cites W1973908489 @default.
- W1508096213 cites W1977945115 @default.
- W1508096213 cites W1984862131 @default.
- W1508096213 cites W2009157513 @default.
- W1508096213 cites W2020009149 @default.
- W1508096213 cites W2023059455 @default.
- W1508096213 cites W2023671885 @default.
- W1508096213 cites W2036012605 @default.
- W1508096213 cites W2043947065 @default.
- W1508096213 cites W2096590200 @default.
- W1508096213 cites W2099111195 @default.
- W1508096213 cites W2102248717 @default.
- W1508096213 cites W2102319929 @default.
- W1508096213 cites W2102550440 @default.
- W1508096213 cites W2106334424 @default.
- W1508096213 cites W2108167744 @default.
- W1508096213 cites W2116661285 @default.
- W1508096213 cites W2126105956 @default.
- W1508096213 cites W2126926002 @default.
- W1508096213 cites W2127984126 @default.
- W1508096213 cites W2140066605 @default.
- W1508096213 cites W2140797335 @default.
- W1508096213 cites W2144636407 @default.
- W1508096213 cites W2146879413 @default.
- W1508096213 cites W2150077224 @default.
- W1508096213 cites W2151554678 @default.
- W1508096213 cites W2152150600 @default.
- W1508096213 cites W2152551290 @default.
- W1508096213 cites W2158357896 @default.
- W1508096213 cites W2164199163 @default.
- W1508096213 cites W2168196445 @default.
- W1508096213 cites W2182836616 @default.
- W1508096213 cites W225560312 @default.
- W1508096213 cites W2261054240 @default.
- W1508096213 cites W2486609979 @default.
- W1508096213 cites W2801034590 @default.
- W1508096213 cites W2977990096 @default.
- W1508096213 cites W3023540311 @default.
- W1508096213 cites W3157409424 @default.
- W1508096213 cites W337606612 @default.
- W1508096213 cites W352329265 @default.
- W1508096213 cites W578277790 @default.
- W1508096213 cites W639881186 @default.
- W1508096213 cites W644964959 @default.
- W1508096213 cites W771673588 @default.
- W1508096213 cites W98056105 @default.
- W1508096213 cites W987026196 @default.
- W1508096213 cites W1549555383 @default.
- W1508096213 cites W2060100227 @default.
- W1508096213 cites W380264756 @default.
- W1508096213 doi "https://doi.org/10.5075/epfl-thesis-2572" @default.
- W1508096213 hasPublicationYear "2002" @default.
- W1508096213 type Work @default.
- W1508096213 sameAs 1508096213 @default.
- W1508096213 citedByCount "28" @default.