Matches in SemOpenAlex for { <https://semopenalex.org/work/W1508163230> ?p ?o ?g. }
- W1508163230 abstract "Parametric regression models that describe the dependence of the mean of some response variable on a set of covariates play a fundamental role in statistics. Allowing for simple interpretation and estimation these models, however, are often not flexible enough for describing the data at hand. In the last 15 to 20 years with the development of computer technology and statistical software, another approach - nonparametric regression - has received more attention and recognition. The mean of a response is thereby modelled as a smooth, but otherwise unspecified function of covariates.The large domain of nonparametric regression models includes local techniques like kernel or locally-weighted smoothers and spline methods. The main focus of this thesis is on penalized splines (P-splines), which have become a very powerful and applicable smoothing technique over the last decade. This nonparametric method can be viewed as a generalization of smoothing splines with a more flexible choice of bases and penalties. The main attraction of P-spline smoothing is its ties with ridge regression, mixed models and Bayesian statistics. This allows the adoption of different techniques, like Markov chain Monte Carlo or likelihood ratio tests for penalized spline methodology. Smoothing, in particular, can be performed with any mixed model or Bayesian software.This thesis addresses several problems of nonparametric techniques that can be successively handled with penalized spline smoothing, due to its link to mixed models. First, smoothing in the presence of correlated errors is shown to be more robust if performed in the mixed models framework. This property is used to estimate the term structure of interest rates. Next, the problem of smoothing of locally heterogeneous functions is treated by representing the adaptive penalized splines as a hierarchical mixed model. Application of Laplace approximation for parameter estimation of this model results in the fast and efficient method for adaptive smoothing, which is implemented in the R package AdaptFit. Investigation of the asymptotic rate at which the spline basis dimension is supposed to grow to minimize mean squared error concludes the thesis." @default.
- W1508163230 created "2016-06-24" @default.
- W1508163230 creator A5090922449 @default.
- W1508163230 date "2006-01-01" @default.
- W1508163230 modified "2023-09-26" @default.
- W1508163230 title "Theoretical and practical aspects of penalized spline smoothing" @default.
- W1508163230 cites W10028449 @default.
- W1508163230 cites W138000234 @default.
- W1508163230 cites W1480834094 @default.
- W1508163230 cites W1484904479 @default.
- W1508163230 cites W1565240145 @default.
- W1508163230 cites W1571907064 @default.
- W1508163230 cites W158306839 @default.
- W1508163230 cites W1587094587 @default.
- W1508163230 cites W1594006182 @default.
- W1508163230 cites W1600178791 @default.
- W1508163230 cites W1603339577 @default.
- W1508163230 cites W1979540356 @default.
- W1508163230 cites W1981565519 @default.
- W1508163230 cites W1982585616 @default.
- W1508163230 cites W1983472209 @default.
- W1508163230 cites W1983607152 @default.
- W1508163230 cites W1988300874 @default.
- W1508163230 cites W1988697445 @default.
- W1508163230 cites W1993774330 @default.
- W1508163230 cites W1995963238 @default.
- W1508163230 cites W1999362203 @default.
- W1508163230 cites W2000084758 @default.
- W1508163230 cites W2002869784 @default.
- W1508163230 cites W2009499611 @default.
- W1508163230 cites W2011018685 @default.
- W1508163230 cites W2014581807 @default.
- W1508163230 cites W2015316714 @default.
- W1508163230 cites W2017535969 @default.
- W1508163230 cites W2019005118 @default.
- W1508163230 cites W2027106381 @default.
- W1508163230 cites W2027505483 @default.
- W1508163230 cites W2028057265 @default.
- W1508163230 cites W2030351330 @default.
- W1508163230 cites W2034562813 @default.
- W1508163230 cites W2035505499 @default.
- W1508163230 cites W2050100385 @default.
- W1508163230 cites W2054546231 @default.
- W1508163230 cites W2059122256 @default.
- W1508163230 cites W2063188271 @default.
- W1508163230 cites W2065540158 @default.
- W1508163230 cites W2069371995 @default.
- W1508163230 cites W2070681743 @default.
- W1508163230 cites W2076057077 @default.
- W1508163230 cites W2077192207 @default.
- W1508163230 cites W2077602267 @default.
- W1508163230 cites W2084397929 @default.
- W1508163230 cites W2085514238 @default.
- W1508163230 cites W2090373435 @default.
- W1508163230 cites W2092946668 @default.
- W1508163230 cites W2094212611 @default.
- W1508163230 cites W2096471740 @default.
- W1508163230 cites W2109785413 @default.
- W1508163230 cites W2116035400 @default.
- W1508163230 cites W2116394790 @default.
- W1508163230 cites W2119047368 @default.
- W1508163230 cites W2121203842 @default.
- W1508163230 cites W2129003284 @default.
- W1508163230 cites W2136018575 @default.
- W1508163230 cites W2138197227 @default.
- W1508163230 cites W214193251 @default.
- W1508163230 cites W2146766088 @default.
- W1508163230 cites W2155729182 @default.
- W1508163230 cites W2157291679 @default.
- W1508163230 cites W2160639727 @default.
- W1508163230 cites W2162240567 @default.
- W1508163230 cites W2162488624 @default.
- W1508163230 cites W2162870748 @default.
- W1508163230 cites W2166624680 @default.
- W1508163230 cites W2168016523 @default.
- W1508163230 cites W2201428280 @default.
- W1508163230 cites W2332903284 @default.
- W1508163230 cites W2407194592 @default.
- W1508163230 cites W2509379157 @default.
- W1508163230 cites W2765840683 @default.
- W1508163230 cites W2798649148 @default.
- W1508163230 cites W2803141649 @default.
- W1508163230 cites W2999729612 @default.
- W1508163230 cites W3000332379 @default.
- W1508163230 cites W3014310718 @default.
- W1508163230 cites W3021444882 @default.
- W1508163230 cites W3121895403 @default.
- W1508163230 cites W3123557714 @default.
- W1508163230 cites W3123931652 @default.
- W1508163230 cites W3124477952 @default.
- W1508163230 cites W3142601845 @default.
- W1508163230 cites W623109190 @default.
- W1508163230 hasPublicationYear "2006" @default.
- W1508163230 type Work @default.
- W1508163230 sameAs 1508163230 @default.
- W1508163230 citedByCount "3" @default.
- W1508163230 countsByYear W15081632302012 @default.
- W1508163230 countsByYear W15081632302014 @default.
- W1508163230 crossrefType "journal-article" @default.
- W1508163230 hasAuthorship W1508163230A5090922449 @default.