Matches in SemOpenAlex for { <https://semopenalex.org/work/W1508823512> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W1508823512 abstract "Sina Weibo, a Twitter-like microblogging site attracting over 240 million monthly active users to tweet, retweet, and comment, has rapidly become one of the most popular social media sites in China. As many users create new and innovative words on their tweets and comments, it is necessary to extract these emerging words, which do not exist in today's Chinese vocabulary or dictionary. Towards this end, this paper proposes a novel method based on data clustering of Weibo users and tweets for extracting unknown words from Weibo tweets and comments. Specifically, relying on the similarity of the users who post the tweets, we apply a hierarchical clustering to divide Weibo data into distinct groups, e.g., sports, news stories, movies, before extraction. Comparing with the method of unclustered Weibo data, our experimental results have successfully demonstrated the benefits of the proposed data clustering scheme for improving the recall and accuracy of extracting unknown Chinese words from tweets and comments." @default.
- W1508823512 created "2016-06-24" @default.
- W1508823512 creator A5021955525 @default.
- W1508823512 creator A5049423626 @default.
- W1508823512 creator A5050348542 @default.
- W1508823512 creator A5078920845 @default.
- W1508823512 date "2015-06-01" @default.
- W1508823512 modified "2023-09-24" @default.
- W1508823512 title "Extracting unknown words from Sina Weibo via data clustering" @default.
- W1508823512 cites W1564105441 @default.
- W1508823512 cites W1861196058 @default.
- W1508823512 cites W1864482474 @default.
- W1508823512 cites W1997384395 @default.
- W1508823512 cites W2033755677 @default.
- W1508823512 cites W2065688092 @default.
- W1508823512 cites W2093424574 @default.
- W1508823512 cites W2096301385 @default.
- W1508823512 cites W2107946060 @default.
- W1508823512 cites W2159193292 @default.
- W1508823512 cites W2270993793 @default.
- W1508823512 doi "https://doi.org/10.1109/icc.2015.7248483" @default.
- W1508823512 hasPublicationYear "2015" @default.
- W1508823512 type Work @default.
- W1508823512 sameAs 1508823512 @default.
- W1508823512 citedByCount "2" @default.
- W1508823512 countsByYear W15088235122015 @default.
- W1508823512 crossrefType "proceedings-article" @default.
- W1508823512 hasAuthorship W1508823512A5021955525 @default.
- W1508823512 hasAuthorship W1508823512A5049423626 @default.
- W1508823512 hasAuthorship W1508823512A5050348542 @default.
- W1508823512 hasAuthorship W1508823512A5078920845 @default.
- W1508823512 hasConcept C154945302 @default.
- W1508823512 hasConcept C23123220 @default.
- W1508823512 hasConcept C41008148 @default.
- W1508823512 hasConcept C73555534 @default.
- W1508823512 hasConceptScore W1508823512C154945302 @default.
- W1508823512 hasConceptScore W1508823512C23123220 @default.
- W1508823512 hasConceptScore W1508823512C41008148 @default.
- W1508823512 hasConceptScore W1508823512C73555534 @default.
- W1508823512 hasLocation W15088235121 @default.
- W1508823512 hasOpenAccess W1508823512 @default.
- W1508823512 hasPrimaryLocation W15088235121 @default.
- W1508823512 hasRelatedWork W1999627569 @default.
- W1508823512 hasRelatedWork W2115485936 @default.
- W1508823512 hasRelatedWork W2119135658 @default.
- W1508823512 hasRelatedWork W2144190808 @default.
- W1508823512 hasRelatedWork W2357241418 @default.
- W1508823512 hasRelatedWork W2366644548 @default.
- W1508823512 hasRelatedWork W2376314740 @default.
- W1508823512 hasRelatedWork W2384888906 @default.
- W1508823512 hasRelatedWork W3107474891 @default.
- W1508823512 hasRelatedWork W763609066 @default.
- W1508823512 isParatext "false" @default.
- W1508823512 isRetracted "false" @default.
- W1508823512 magId "1508823512" @default.
- W1508823512 workType "article" @default.