Matches in SemOpenAlex for { <https://semopenalex.org/work/W1508964797> ?p ?o ?g. }
- W1508964797 endingPage "1279" @default.
- W1508964797 startingPage "1274" @default.
- W1508964797 abstract "Fully characterizing structural and functional sites in proteins is a fundamental step in understanding their roles in the cell. This extremely challenging combinatorial problem requires determining the number of sites in the protein and the set of residues involved in each of them. We formulate it as a distance-based supervised clustering task, where training proteins are employed to learn a proper distance function between residues. A partial clustering is then returned by searching for maximum-weight cliques in the resulting weighted graph representation of proteins. A novel stochastic local search algorithm is proposed to efficiently generate approximate solutions. Our method achieves substantial improvements over a previous structured-output approach for metal binding site prediction. Significant improvements over the current state-of-the-art are also achieved in predicting catalytic sites from 3D structure in enzymes." @default.
- W1508964797 created "2016-06-24" @default.
- W1508964797 creator A5034785418 @default.
- W1508964797 creator A5066187890 @default.
- W1508964797 creator A5072420259 @default.
- W1508964797 creator A5085078006 @default.
- W1508964797 date "2010-07-04" @default.
- W1508964797 modified "2023-10-02" @default.
- W1508964797 title "Predicting Structural and Functional Sites in Proteins by Searching for Maximum-weight Cliques" @default.
- W1508964797 cites W1486639717 @default.
- W1508964797 cites W1601921799 @default.
- W1508964797 cites W166788944 @default.
- W1508964797 cites W1928593089 @default.
- W1508964797 cites W1964640688 @default.
- W1508964797 cites W1980850924 @default.
- W1508964797 cites W1983259744 @default.
- W1508964797 cites W1984217603 @default.
- W1508964797 cites W1999402949 @default.
- W1508964797 cites W2019481000 @default.
- W1508964797 cites W2023932999 @default.
- W1508964797 cites W2041204043 @default.
- W1508964797 cites W2043886357 @default.
- W1508964797 cites W2056023591 @default.
- W1508964797 cites W2094314299 @default.
- W1508964797 cites W2109681606 @default.
- W1508964797 cites W2118847637 @default.
- W1508964797 cites W2132886170 @default.
- W1508964797 cites W2149029960 @default.
- W1508964797 cites W2149033474 @default.
- W1508964797 cites W2153026148 @default.
- W1508964797 cites W2158367778 @default.
- W1508964797 cites W2165851715 @default.
- W1508964797 cites W2398101526 @default.
- W1508964797 cites W255267395 @default.
- W1508964797 cites W2740373864 @default.
- W1508964797 cites W2798505457 @default.
- W1508964797 cites W2800137860 @default.
- W1508964797 cites W3135526373 @default.
- W1508964797 cites W36669759 @default.
- W1508964797 cites W615683476 @default.
- W1508964797 cites W83999173 @default.
- W1508964797 cites W2021160454 @default.
- W1508964797 doi "https://doi.org/10.1609/aaai.v24i1.7495" @default.
- W1508964797 hasPublicationYear "2010" @default.
- W1508964797 type Work @default.
- W1508964797 sameAs 1508964797 @default.
- W1508964797 citedByCount "11" @default.
- W1508964797 countsByYear W15089647972015 @default.
- W1508964797 countsByYear W15089647972016 @default.
- W1508964797 countsByYear W15089647972017 @default.
- W1508964797 countsByYear W15089647972018 @default.
- W1508964797 countsByYear W15089647972019 @default.
- W1508964797 countsByYear W15089647972020 @default.
- W1508964797 countsByYear W15089647972021 @default.
- W1508964797 crossrefType "journal-article" @default.
- W1508964797 hasAuthorship W1508964797A5034785418 @default.
- W1508964797 hasAuthorship W1508964797A5066187890 @default.
- W1508964797 hasAuthorship W1508964797A5072420259 @default.
- W1508964797 hasAuthorship W1508964797A5085078006 @default.
- W1508964797 hasBestOaLocation W15089647971 @default.
- W1508964797 hasConcept C11413529 @default.
- W1508964797 hasConcept C124101348 @default.
- W1508964797 hasConcept C127413603 @default.
- W1508964797 hasConcept C132525143 @default.
- W1508964797 hasConcept C154945302 @default.
- W1508964797 hasConcept C177264268 @default.
- W1508964797 hasConcept C17744445 @default.
- W1508964797 hasConcept C199360897 @default.
- W1508964797 hasConcept C199539241 @default.
- W1508964797 hasConcept C201995342 @default.
- W1508964797 hasConcept C2776359362 @default.
- W1508964797 hasConcept C2780451532 @default.
- W1508964797 hasConcept C41008148 @default.
- W1508964797 hasConcept C73555534 @default.
- W1508964797 hasConcept C80444323 @default.
- W1508964797 hasConcept C94625758 @default.
- W1508964797 hasConceptScore W1508964797C11413529 @default.
- W1508964797 hasConceptScore W1508964797C124101348 @default.
- W1508964797 hasConceptScore W1508964797C127413603 @default.
- W1508964797 hasConceptScore W1508964797C132525143 @default.
- W1508964797 hasConceptScore W1508964797C154945302 @default.
- W1508964797 hasConceptScore W1508964797C177264268 @default.
- W1508964797 hasConceptScore W1508964797C17744445 @default.
- W1508964797 hasConceptScore W1508964797C199360897 @default.
- W1508964797 hasConceptScore W1508964797C199539241 @default.
- W1508964797 hasConceptScore W1508964797C201995342 @default.
- W1508964797 hasConceptScore W1508964797C2776359362 @default.
- W1508964797 hasConceptScore W1508964797C2780451532 @default.
- W1508964797 hasConceptScore W1508964797C41008148 @default.
- W1508964797 hasConceptScore W1508964797C73555534 @default.
- W1508964797 hasConceptScore W1508964797C80444323 @default.
- W1508964797 hasConceptScore W1508964797C94625758 @default.
- W1508964797 hasIssue "1" @default.
- W1508964797 hasLocation W15089647971 @default.
- W1508964797 hasOpenAccess W1508964797 @default.
- W1508964797 hasPrimaryLocation W15089647971 @default.
- W1508964797 hasRelatedWork W1979871427 @default.
- W1508964797 hasRelatedWork W2068266569 @default.