Matches in SemOpenAlex for { <https://semopenalex.org/work/W1509000280> ?p ?o ?g. }
- W1509000280 abstract "An electrocardiogram (ECG) is a bioelectrical signal which records the heart's electrical activity versus time. It is an important diagnostic tool for assessing heart functions. The interpretation of ECG signal is an application of pattern recognition. The techniques used in this pattern recognition comprise: signal pre-processing, QRS detection, feature extraction and neural network for signal classification. In this project, signal processing and neural network toolbox will be used in Matlab environment. The processed signal source came from the Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) arrhythmia database which was developed for research in cardiac electro-physiology.Five conditions of ECG waveform were selected from MIT-BIH database in this research. The ECG samples were processed and normalised to produce a set of features that can be used in different structures of neural network and subsequent recognition rates were recorded. Backpropagation algorithm will be considered for different structures of neural network and the performance in each case will be measured. This research is focused on finding the best neural network structure for ECG signal classification and a number of signal pre-processing and QRS detection algorithms were also tested. The feature extraction is based on an existing algorithm.The results of recognition rates are compared to find a better structure for ECG classification. Different ECG feature inputs were used in the experiments to compare and find a desirable features input for ECG classification. Among different structures, it was found that a three layer network structure with 25 inputs, 5 neurons in the output layer and 5 neurons in its hidden layers possessed the best performance with highest recognition rate of 91.8% for five cardiac conditions. The average accuracy rate for this kind of structure with different structures was 84.93%. It was also tested that 25 feature input is suitable for training and testing in ECG classification. Based on this result, the method of using important ECG features plus a suitable number of compressed ECG signals can dramatically decrease the complexity of the neural network structure, which can increase the testing speed and the accuracy rate of the network verification. It also gives further suggestions to plan the experiments for the future work." @default.
- W1509000280 created "2016-06-24" @default.
- W1509000280 creator A5053427227 @default.
- W1509000280 date "2003-01-01" @default.
- W1509000280 modified "2023-09-24" @default.
- W1509000280 title "Computerised detection and classification of five cardiac conditions" @default.
- W1509000280 cites W1480340445 @default.
- W1509000280 cites W1554320700 @default.
- W1509000280 cites W1607271942 @default.
- W1509000280 cites W1981914283 @default.
- W1509000280 cites W2000909451 @default.
- W1509000280 cites W2008866051 @default.
- W1509000280 cites W2048534329 @default.
- W1509000280 cites W2055515349 @default.
- W1509000280 cites W2089464374 @default.
- W1509000280 cites W2096490630 @default.
- W1509000280 cites W2096939019 @default.
- W1509000280 cites W2098757776 @default.
- W1509000280 cites W2108980074 @default.
- W1509000280 cites W2124785086 @default.
- W1509000280 cites W2141890603 @default.
- W1509000280 cites W2150501849 @default.
- W1509000280 cites W2150833087 @default.
- W1509000280 cites W2155321485 @default.
- W1509000280 cites W2157655850 @default.
- W1509000280 cites W2167489140 @default.
- W1509000280 cites W2506003209 @default.
- W1509000280 hasPublicationYear "2003" @default.
- W1509000280 type Work @default.
- W1509000280 sameAs 1509000280 @default.
- W1509000280 citedByCount "11" @default.
- W1509000280 countsByYear W15090002802012 @default.
- W1509000280 countsByYear W15090002802013 @default.
- W1509000280 countsByYear W15090002802014 @default.
- W1509000280 countsByYear W15090002802016 @default.
- W1509000280 countsByYear W15090002802017 @default.
- W1509000280 countsByYear W15090002802021 @default.
- W1509000280 crossrefType "dissertation" @default.
- W1509000280 hasAuthorship W1509000280A5053427227 @default.
- W1509000280 hasConcept C104267543 @default.
- W1509000280 hasConcept C111773187 @default.
- W1509000280 hasConcept C111919701 @default.
- W1509000280 hasConcept C138885662 @default.
- W1509000280 hasConcept C153180895 @default.
- W1509000280 hasConcept C154945302 @default.
- W1509000280 hasConcept C155032097 @default.
- W1509000280 hasConcept C164705383 @default.
- W1509000280 hasConcept C197424946 @default.
- W1509000280 hasConcept C199360897 @default.
- W1509000280 hasConcept C2776401178 @default.
- W1509000280 hasConcept C2779843651 @default.
- W1509000280 hasConcept C2780365114 @default.
- W1509000280 hasConcept C41008148 @default.
- W1509000280 hasConcept C41895202 @default.
- W1509000280 hasConcept C50644808 @default.
- W1509000280 hasConcept C52622490 @default.
- W1509000280 hasConcept C554190296 @default.
- W1509000280 hasConcept C60908668 @default.
- W1509000280 hasConcept C71924100 @default.
- W1509000280 hasConcept C76155785 @default.
- W1509000280 hasConcept C84462506 @default.
- W1509000280 hasConcept C9390403 @default.
- W1509000280 hasConceptScore W1509000280C104267543 @default.
- W1509000280 hasConceptScore W1509000280C111773187 @default.
- W1509000280 hasConceptScore W1509000280C111919701 @default.
- W1509000280 hasConceptScore W1509000280C138885662 @default.
- W1509000280 hasConceptScore W1509000280C153180895 @default.
- W1509000280 hasConceptScore W1509000280C154945302 @default.
- W1509000280 hasConceptScore W1509000280C155032097 @default.
- W1509000280 hasConceptScore W1509000280C164705383 @default.
- W1509000280 hasConceptScore W1509000280C197424946 @default.
- W1509000280 hasConceptScore W1509000280C199360897 @default.
- W1509000280 hasConceptScore W1509000280C2776401178 @default.
- W1509000280 hasConceptScore W1509000280C2779843651 @default.
- W1509000280 hasConceptScore W1509000280C2780365114 @default.
- W1509000280 hasConceptScore W1509000280C41008148 @default.
- W1509000280 hasConceptScore W1509000280C41895202 @default.
- W1509000280 hasConceptScore W1509000280C50644808 @default.
- W1509000280 hasConceptScore W1509000280C52622490 @default.
- W1509000280 hasConceptScore W1509000280C554190296 @default.
- W1509000280 hasConceptScore W1509000280C60908668 @default.
- W1509000280 hasConceptScore W1509000280C71924100 @default.
- W1509000280 hasConceptScore W1509000280C76155785 @default.
- W1509000280 hasConceptScore W1509000280C84462506 @default.
- W1509000280 hasConceptScore W1509000280C9390403 @default.
- W1509000280 hasLocation W15090002801 @default.
- W1509000280 hasOpenAccess W1509000280 @default.
- W1509000280 hasPrimaryLocation W15090002801 @default.
- W1509000280 hasRelatedWork W1964067044 @default.
- W1509000280 hasRelatedWork W2002108345 @default.
- W1509000280 hasRelatedWork W2129996049 @default.
- W1509000280 hasRelatedWork W2142386346 @default.
- W1509000280 hasRelatedWork W2146590667 @default.
- W1509000280 hasRelatedWork W2189026777 @default.
- W1509000280 hasRelatedWork W2604528605 @default.
- W1509000280 hasRelatedWork W2748591858 @default.
- W1509000280 hasRelatedWork W2773221375 @default.
- W1509000280 hasRelatedWork W2887233305 @default.
- W1509000280 hasRelatedWork W2906113915 @default.
- W1509000280 hasRelatedWork W3018709037 @default.