Matches in SemOpenAlex for { <https://semopenalex.org/work/W1509213036> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W1509213036 abstract "This chapter has the objective of presenting four studies involving neural networks in the area of advanced oxidative process. Advanced Oxidative Processes area based on the generation and reaction of hydroxyl radicals. Because they are not selective and it possesses a high oxidizing power are able to degrade organic contaminants. Mathematical modeling of chemical process is often addressed in photocatalytic function of some parameters that are inherent in the process, such as the geometry of a reactor or characteristics of the compound to be worked, such as solubility and spectral characteristics of organic compounds. By moving the geometry of the reactor, moves through the proposed model. When they moved the reagents, changes completely the kinetics of the reactions involved and consequently the reactor performance. The process of decolorization and degradation of organic compounds may involve, according to criteria adopted modeling, a series of reactions kinetics. The photocatalytic process modeling involves the solution to a complex set of equations of energy (radiation), the mass balance, momentum and heat, being a difficult process description. The performance of a photoreactor is strongly influenced by many physical-chemical interaction occurring between these variables. Conventional modeling techniques can produce models not appropriate. This sense, neural modeling, empirical, presents itself as alternative to the traditional model, because it is based on mathematical equation. Based on the study of behavioral characteristics of the sets of input and output of the process of discoloration and degradation of organic compounds, possessing the ability to learn the behavior of linear or nonlinear experimental data. Through this learning may provide the optimization of the action of hydroxyl radical oxidation. Are presented four applications involving neural networks modeling. a. Neural approximation of the reduction of cod effluents from the manufacturing of polyesters trought photo-fenton procces/ ozonization b. Hybrid neural model for decoloration by UV/ H2O2 involving process variables and structural parameters characteristics to azo dyes" @default.
- W1509213036 created "2016-06-24" @default.
- W1509213036 creator A5001516340 @default.
- W1509213036 creator A5017740920 @default.
- W1509213036 creator A5023695531 @default.
- W1509213036 creator A5029326183 @default.
- W1509213036 creator A5045137301 @default.
- W1509213036 creator A5054921285 @default.
- W1509213036 creator A5057083777 @default.
- W1509213036 creator A5087652792 @default.
- W1509213036 date "2011-04-11" @default.
- W1509213036 modified "2023-10-13" @default.
- W1509213036 title "Applications of Neural Networks in Advanced Oxidative Process" @default.
- W1509213036 cites W192192476 @default.
- W1509213036 cites W2000101229 @default.
- W1509213036 cites W2002466529 @default.
- W1509213036 cites W2006648939 @default.
- W1509213036 cites W2011588810 @default.
- W1509213036 cites W2016417044 @default.
- W1509213036 cites W2071074231 @default.
- W1509213036 cites W2083844448 @default.
- W1509213036 doi "https://doi.org/10.5772/16018" @default.
- W1509213036 hasPublicationYear "2011" @default.
- W1509213036 type Work @default.
- W1509213036 sameAs 1509213036 @default.
- W1509213036 citedByCount "0" @default.
- W1509213036 crossrefType "book-chapter" @default.
- W1509213036 hasAuthorship W1509213036A5001516340 @default.
- W1509213036 hasAuthorship W1509213036A5017740920 @default.
- W1509213036 hasAuthorship W1509213036A5023695531 @default.
- W1509213036 hasAuthorship W1509213036A5029326183 @default.
- W1509213036 hasAuthorship W1509213036A5045137301 @default.
- W1509213036 hasAuthorship W1509213036A5054921285 @default.
- W1509213036 hasAuthorship W1509213036A5057083777 @default.
- W1509213036 hasAuthorship W1509213036A5087652792 @default.
- W1509213036 hasBestOaLocation W15092130361 @default.
- W1509213036 hasConcept C154945302 @default.
- W1509213036 hasConcept C199360897 @default.
- W1509213036 hasConcept C41008148 @default.
- W1509213036 hasConcept C50644808 @default.
- W1509213036 hasConcept C98045186 @default.
- W1509213036 hasConceptScore W1509213036C154945302 @default.
- W1509213036 hasConceptScore W1509213036C199360897 @default.
- W1509213036 hasConceptScore W1509213036C41008148 @default.
- W1509213036 hasConceptScore W1509213036C50644808 @default.
- W1509213036 hasConceptScore W1509213036C98045186 @default.
- W1509213036 hasLocation W15092130361 @default.
- W1509213036 hasLocation W15092130362 @default.
- W1509213036 hasOpenAccess W1509213036 @default.
- W1509213036 hasPrimaryLocation W15092130361 @default.
- W1509213036 hasRelatedWork W1987569955 @default.
- W1509213036 hasRelatedWork W2015939279 @default.
- W1509213036 hasRelatedWork W2029412421 @default.
- W1509213036 hasRelatedWork W2085580665 @default.
- W1509213036 hasRelatedWork W2370652759 @default.
- W1509213036 hasRelatedWork W2379162918 @default.
- W1509213036 hasRelatedWork W2386387936 @default.
- W1509213036 hasRelatedWork W2435007635 @default.
- W1509213036 hasRelatedWork W4304136584 @default.
- W1509213036 hasRelatedWork W831794578 @default.
- W1509213036 isParatext "false" @default.
- W1509213036 isRetracted "false" @default.
- W1509213036 magId "1509213036" @default.
- W1509213036 workType "book-chapter" @default.