Matches in SemOpenAlex for { <https://semopenalex.org/work/W1509305976> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1509305976 abstract "One-dimensional nanowires represent one of the most promising possibilities for the application of nanotechnology to a broad selection of areas. This field has been rapidly expanding over the past decade, with new methods of production, mechanisms of formation, measurements of properties and potential applications being published every day. Semiconductor nanowires in particular represent an exciting area of research, with potential to revolutionize the areas of electronics and optoelectronics. Several different devices based on 1D nanostructures have been demonstrated including light emitting diodes (LEDs) [1-5], field-effect transistors (FETs) [6-9], biosensors [10, 11], and solar cells [12, 13]. Considerable work remains before 1D nanostructures can be integrated into existing semiconductor technology, but the up-scaling problems are being addressed by several research groups [14]. In addition to biosensors, nanowires might also be used for other medical applications in the future. Patterned nanowire arrays have been demonstrated to work as guides and rectifiers of nerve cells on a substrate, which opens up new possibilities for neural network design [15]. Techniques to produce nanowires are normally divided into top-down and bottom-up methods. Nanowires can be produced by lithographically carving out the structures from the desired bulk material, referred to as top-down production. The major drawback of this method is that the surfaces of the structures are damaged during the process resulting in nanowires with a poor crystal quality. In addition the lithographic techniques may not be able to produce sufficiently small structures for further downscaling of devices. In order to produce small enough nanowires of high enough crystal quality, so called bottom-up production can instead be used. This means that the nanowires are formed by self-organization atom by atom in a highly controllable manner. A variety of bottom-up methods have been used to produce nanowires, usually classified into solution methods and vapor phase methods [16]. The solution methods include pure solution chemistry methods as well as electrochemical deposition methods in combination with templates [17]. The major advantage with such a solution-based method is the ability to produce large amounts of material at low cost. On the other hand solution methods offer poor control of nanowire dimensions and positioning, properties crucial for device applications. Electrochemical deposition also has the drawback of generally poor nanowire crystal quality with a high number of defects, which is a major limitation in device applications, especially in the field of optics [17]. Vapor phase methods are extensively used for nanowire production [16], and include physical methods such as laser ablation and thermal evaporation, as well as chemical methods. In contrast to solution methods, they are steady-state growth techniques which provide a better control of the growth and morphology of the wires. Vapor phase methods, especially vapor phase epitaxy (VPE), dominate nanowire growth today and are most commonly used for production of semiconductor device structures [18]. Although these techniques are rather expensive, they are especially advantageous in two ways. First of all a huge range of vapor phase precursors exist, making it possible to grow nanowires of many different types of materials. Secondly, very high control of the growth process is possible, enabling the growth of complex nanowire structures. In addition to the many different nanowire production methods existing, nanowires of a variety of materials have been produced. Among them metal nanowires, oxide nanowires, metal carbide nanowires, metal chalcogenide nanowires, and semiconductor nanowires have been demonstrated. For an extensive review of the materials systems used to produce nanowires see for example Rao et al. [16]. Here we discuss mainly semiconductor nanowires with the emphasis on III-V" @default.
- W1509305976 created "2016-06-24" @default.
- W1509305976 creator A5041075466 @default.
- W1509305976 date "2013-01-01" @default.
- W1509305976 modified "2023-09-23" @default.
- W1509305976 title "Nanowires for solar cell applications" @default.
- W1509305976 hasPublicationYear "2013" @default.
- W1509305976 type Work @default.
- W1509305976 sameAs 1509305976 @default.
- W1509305976 citedByCount "0" @default.
- W1509305976 crossrefType "journal-article" @default.
- W1509305976 hasAuthorship W1509305976A5041075466 @default.
- W1509305976 hasConcept C108225325 @default.
- W1509305976 hasConcept C111368507 @default.
- W1509305976 hasConcept C119599485 @default.
- W1509305976 hasConcept C127313418 @default.
- W1509305976 hasConcept C127413603 @default.
- W1509305976 hasConcept C138331895 @default.
- W1509305976 hasConcept C165801399 @default.
- W1509305976 hasConcept C171250308 @default.
- W1509305976 hasConcept C172385210 @default.
- W1509305976 hasConcept C192562407 @default.
- W1509305976 hasConcept C2777289219 @default.
- W1509305976 hasConcept C2780824857 @default.
- W1509305976 hasConcept C49040817 @default.
- W1509305976 hasConcept C74214498 @default.
- W1509305976 hasConceptScore W1509305976C108225325 @default.
- W1509305976 hasConceptScore W1509305976C111368507 @default.
- W1509305976 hasConceptScore W1509305976C119599485 @default.
- W1509305976 hasConceptScore W1509305976C127313418 @default.
- W1509305976 hasConceptScore W1509305976C127413603 @default.
- W1509305976 hasConceptScore W1509305976C138331895 @default.
- W1509305976 hasConceptScore W1509305976C165801399 @default.
- W1509305976 hasConceptScore W1509305976C171250308 @default.
- W1509305976 hasConceptScore W1509305976C172385210 @default.
- W1509305976 hasConceptScore W1509305976C192562407 @default.
- W1509305976 hasConceptScore W1509305976C2777289219 @default.
- W1509305976 hasConceptScore W1509305976C2780824857 @default.
- W1509305976 hasConceptScore W1509305976C49040817 @default.
- W1509305976 hasConceptScore W1509305976C74214498 @default.
- W1509305976 hasOpenAccess W1509305976 @default.
- W1509305976 hasRelatedWork W1668873813 @default.
- W1509305976 hasRelatedWork W1919286402 @default.
- W1509305976 hasRelatedWork W1959796964 @default.
- W1509305976 hasRelatedWork W1974689399 @default.
- W1509305976 hasRelatedWork W2017621122 @default.
- W1509305976 hasRelatedWork W2044953835 @default.
- W1509305976 hasRelatedWork W2077475836 @default.
- W1509305976 hasRelatedWork W2090131551 @default.
- W1509305976 hasRelatedWork W2158477740 @default.
- W1509305976 hasRelatedWork W2477964253 @default.
- W1509305976 hasRelatedWork W2792927656 @default.
- W1509305976 hasRelatedWork W2885994978 @default.
- W1509305976 hasRelatedWork W2950960383 @default.
- W1509305976 hasRelatedWork W2951117517 @default.
- W1509305976 hasRelatedWork W2965894632 @default.
- W1509305976 hasRelatedWork W2981204842 @default.
- W1509305976 hasRelatedWork W3145264811 @default.
- W1509305976 hasRelatedWork W95502757 @default.
- W1509305976 hasRelatedWork W2136668226 @default.
- W1509305976 hasRelatedWork W2591825392 @default.
- W1509305976 isParatext "false" @default.
- W1509305976 isRetracted "false" @default.
- W1509305976 magId "1509305976" @default.
- W1509305976 workType "article" @default.