Matches in SemOpenAlex for { <https://semopenalex.org/work/W1511792011> ?p ?o ?g. }
- W1511792011 abstract "The “S-over” equation for the load distribution factor (LDF) was first introduced in the 1930s in the AASHTO Standard. Finite element studies, however, have shown it to be unsafe in some cases and too conservative in others. AASHTO LRFD 1994 introduced a new LDF equation as a result of the NCHRP 12-26 project. This equation is based on parametric studies and finite element analyses (FEA). It is considered to be a good representation of bridge behavior. However, this equation involves a longitudinal stiffness parameter, which is not initially known in design. Thus, an iterative procedure is required to correctly determine the LDF value. This need for an iterative design procedure is perceived by practicing engineers as the major impediment to widespread acceptance of the AASHTO LRFD equation. In this study, a new simplified equation that is based on the AASHTO LRFD formula and does not require an iterative procedure is developed. A total of 43 steel girder bridges and 17 prestressed concrete girder bridges in the state of Indiana are selected and analyzed using a sophisticated finite element model. The new simplified equation produces LDF values that are always conservative when compared to those obtained from the finite element analyses and are generally greater than the LDF obtained using AASHTO LRFD specification. Therefore, the simplified equation provides a simple yet safe specification for LDF calculation. This study also investigates the effects of secondary elements and bridge deck cracking on the LDF of bridges. The AASHTO LRFD LDF equation was developed based on elastic finite element analysis considering only primary members, i.e., the effects of secondary elements such as lateral bracing and parapets were not considered. Meanwhile, many bridges have been identified as having significant cracking in the concrete deck. Even though deck cracking is a well-known phenomenon, the significance of pre-existing cracks on the live load distribution has not yet been assessed in the literature. First, secondary elements such as diaphragms and parapet were modeled using the finite element method, and the calculated load distribution factors were compared with the code-specified values. Second, the effects of typical deck cracking and crack types that have a major effect on load distribution were identified through a number of nonlinear finite element analyses. It was found that the presence of secondary elements can result in a load distribution factor up to 40 % lower than the AASHTO LRFD value. Longitudinal cracking was found to increase the load distribution factor; the resulting load distribution factor can be up to 17 % higher than the LRFD value. Transverse cracking was found to not significantly influence the transverse distribution of moment. Finally, for one of the selected bridges, both concrete cracking and secondary elements are considered to invesitigate their combined effect on lateral load distribution. The increased LDF due to deck cracking is offset by the contributions from the secondary elements. The result is that the proposed simplified equation is conservative and is recommended for determination of LDF." @default.
- W1511792011 created "2016-06-24" @default.
- W1511792011 creator A5016023171 @default.
- W1511792011 creator A5049684215 @default.
- W1511792011 creator A5059567565 @default.
- W1511792011 creator A5080338488 @default.
- W1511792011 date "2004-01-01" @default.
- W1511792011 modified "2023-10-18" @default.
- W1511792011 title "Simplified Load Distribution Factor for Use in LRFD Design" @default.
- W1511792011 cites W1513347768 @default.
- W1511792011 cites W1521182328 @default.
- W1511792011 cites W1537129226 @default.
- W1511792011 cites W1543498407 @default.
- W1511792011 cites W1551542124 @default.
- W1511792011 cites W1957823995 @default.
- W1511792011 cites W1968907425 @default.
- W1511792011 cites W1969863959 @default.
- W1511792011 cites W1970418878 @default.
- W1511792011 cites W1970566086 @default.
- W1511792011 cites W1980315942 @default.
- W1511792011 cites W1994988809 @default.
- W1511792011 cites W1996589026 @default.
- W1511792011 cites W1999477859 @default.
- W1511792011 cites W2002888304 @default.
- W1511792011 cites W2004208687 @default.
- W1511792011 cites W2009345627 @default.
- W1511792011 cites W2009449930 @default.
- W1511792011 cites W2010728497 @default.
- W1511792011 cites W2012782152 @default.
- W1511792011 cites W2014447106 @default.
- W1511792011 cites W2030440692 @default.
- W1511792011 cites W2033640476 @default.
- W1511792011 cites W2038156651 @default.
- W1511792011 cites W2041692407 @default.
- W1511792011 cites W2042433741 @default.
- W1511792011 cites W2044207148 @default.
- W1511792011 cites W2051858620 @default.
- W1511792011 cites W2059037447 @default.
- W1511792011 cites W2063496589 @default.
- W1511792011 cites W2076374945 @default.
- W1511792011 cites W2089101691 @default.
- W1511792011 cites W2128507635 @default.
- W1511792011 cites W2129089543 @default.
- W1511792011 cites W2136081899 @default.
- W1511792011 cites W2151374630 @default.
- W1511792011 cites W2164673062 @default.
- W1511792011 cites W2171392304 @default.
- W1511792011 cites W2241248882 @default.
- W1511792011 cites W2259335760 @default.
- W1511792011 cites W604151237 @default.
- W1511792011 doi "https://doi.org/10.5703/1288284313314" @default.
- W1511792011 hasPublicationYear "2004" @default.
- W1511792011 type Work @default.
- W1511792011 sameAs 1511792011 @default.
- W1511792011 citedByCount "4" @default.
- W1511792011 countsByYear W15117920112013 @default.
- W1511792011 countsByYear W15117920112014 @default.
- W1511792011 countsByYear W15117920112016 @default.
- W1511792011 countsByYear W15117920112023 @default.
- W1511792011 crossrefType "report" @default.
- W1511792011 hasAuthorship W1511792011A5016023171 @default.
- W1511792011 hasAuthorship W1511792011A5049684215 @default.
- W1511792011 hasAuthorship W1511792011A5059567565 @default.
- W1511792011 hasAuthorship W1511792011A5080338488 @default.
- W1511792011 hasBestOaLocation W15117920111 @default.
- W1511792011 hasConcept C100776233 @default.
- W1511792011 hasConcept C105795698 @default.
- W1511792011 hasConcept C117251300 @default.
- W1511792011 hasConcept C126255220 @default.
- W1511792011 hasConcept C126322002 @default.
- W1511792011 hasConcept C127413603 @default.
- W1511792011 hasConcept C135628077 @default.
- W1511792011 hasConcept C159694833 @default.
- W1511792011 hasConcept C196316656 @default.
- W1511792011 hasConcept C2778966251 @default.
- W1511792011 hasConcept C2779372316 @default.
- W1511792011 hasConcept C33923547 @default.
- W1511792011 hasConcept C66938386 @default.
- W1511792011 hasConcept C71924100 @default.
- W1511792011 hasConceptScore W1511792011C100776233 @default.
- W1511792011 hasConceptScore W1511792011C105795698 @default.
- W1511792011 hasConceptScore W1511792011C117251300 @default.
- W1511792011 hasConceptScore W1511792011C126255220 @default.
- W1511792011 hasConceptScore W1511792011C126322002 @default.
- W1511792011 hasConceptScore W1511792011C127413603 @default.
- W1511792011 hasConceptScore W1511792011C135628077 @default.
- W1511792011 hasConceptScore W1511792011C159694833 @default.
- W1511792011 hasConceptScore W1511792011C196316656 @default.
- W1511792011 hasConceptScore W1511792011C2778966251 @default.
- W1511792011 hasConceptScore W1511792011C2779372316 @default.
- W1511792011 hasConceptScore W1511792011C33923547 @default.
- W1511792011 hasConceptScore W1511792011C66938386 @default.
- W1511792011 hasConceptScore W1511792011C71924100 @default.
- W1511792011 hasLocation W15117920111 @default.
- W1511792011 hasLocation W15117920112 @default.
- W1511792011 hasOpenAccess W1511792011 @default.
- W1511792011 hasPrimaryLocation W15117920111 @default.
- W1511792011 hasRelatedWork W190360708 @default.
- W1511792011 hasRelatedWork W204238407 @default.
- W1511792011 hasRelatedWork W2353516228 @default.