Matches in SemOpenAlex for { <https://semopenalex.org/work/W1512071535> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1512071535 endingPage "36" @default.
- W1512071535 startingPage "19" @default.
- W1512071535 abstract "We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we achieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks." @default.
- W1512071535 created "2016-06-24" @default.
- W1512071535 creator A5000223799 @default.
- W1512071535 creator A5056022933 @default.
- W1512071535 date "2010-01-01" @default.
- W1512071535 modified "2023-09-26" @default.
- W1512071535 title "Improved Algebraic Cryptanalysis of QUAD, Bivium and Trivium via Graph Partitioning on Equation Systems" @default.
- W1512071535 cites W1493429498 @default.
- W1512071535 cites W1495150777 @default.
- W1512071535 cites W1495635538 @default.
- W1512071535 cites W1500553477 @default.
- W1512071535 cites W1504830137 @default.
- W1512071535 cites W1507507680 @default.
- W1512071535 cites W1520511539 @default.
- W1512071535 cites W1538076361 @default.
- W1512071535 cites W1560023496 @default.
- W1512071535 cites W1583871653 @default.
- W1512071535 cites W1628272610 @default.
- W1512071535 cites W1871494460 @default.
- W1512071535 cites W1950282396 @default.
- W1512071535 cites W1976677460 @default.
- W1512071535 cites W2038643780 @default.
- W1512071535 cites W2070232376 @default.
- W1512071535 cites W2073558110 @default.
- W1512071535 cites W2082817855 @default.
- W1512071535 cites W2127064687 @default.
- W1512071535 cites W2128687423 @default.
- W1512071535 cites W2145062394 @default.
- W1512071535 cites W2160494425 @default.
- W1512071535 cites W2161455936 @default.
- W1512071535 cites W2162136000 @default.
- W1512071535 cites W2913079528 @default.
- W1512071535 cites W3100033570 @default.
- W1512071535 cites W4236269389 @default.
- W1512071535 cites W4236509984 @default.
- W1512071535 cites W4243764894 @default.
- W1512071535 cites W4248581760 @default.
- W1512071535 cites W976211528 @default.
- W1512071535 cites W401735167 @default.
- W1512071535 doi "https://doi.org/10.1007/978-3-642-14081-5_2" @default.
- W1512071535 hasPublicationYear "2010" @default.
- W1512071535 type Work @default.
- W1512071535 sameAs 1512071535 @default.
- W1512071535 citedByCount "6" @default.
- W1512071535 countsByYear W15120715352012 @default.
- W1512071535 countsByYear W15120715352014 @default.
- W1512071535 countsByYear W15120715352019 @default.
- W1512071535 crossrefType "book-chapter" @default.
- W1512071535 hasAuthorship W1512071535A5000223799 @default.
- W1512071535 hasAuthorship W1512071535A5056022933 @default.
- W1512071535 hasBestOaLocation W15120715352 @default.
- W1512071535 hasConcept C11413529 @default.
- W1512071535 hasConcept C118615104 @default.
- W1512071535 hasConcept C132525143 @default.
- W1512071535 hasConcept C178489894 @default.
- W1512071535 hasConcept C181149355 @default.
- W1512071535 hasConcept C33923547 @default.
- W1512071535 hasConcept C41008148 @default.
- W1512071535 hasConcept C80444323 @default.
- W1512071535 hasConcept C80899671 @default.
- W1512071535 hasConceptScore W1512071535C11413529 @default.
- W1512071535 hasConceptScore W1512071535C118615104 @default.
- W1512071535 hasConceptScore W1512071535C132525143 @default.
- W1512071535 hasConceptScore W1512071535C178489894 @default.
- W1512071535 hasConceptScore W1512071535C181149355 @default.
- W1512071535 hasConceptScore W1512071535C33923547 @default.
- W1512071535 hasConceptScore W1512071535C41008148 @default.
- W1512071535 hasConceptScore W1512071535C80444323 @default.
- W1512071535 hasConceptScore W1512071535C80899671 @default.
- W1512071535 hasLocation W15120715351 @default.
- W1512071535 hasLocation W15120715352 @default.
- W1512071535 hasLocation W15120715353 @default.
- W1512071535 hasOpenAccess W1512071535 @default.
- W1512071535 hasPrimaryLocation W15120715351 @default.
- W1512071535 hasRelatedWork W1575344590 @default.
- W1512071535 hasRelatedWork W2138036968 @default.
- W1512071535 hasRelatedWork W2170157130 @default.
- W1512071535 hasRelatedWork W2329325022 @default.
- W1512071535 hasRelatedWork W2354001407 @default.
- W1512071535 hasRelatedWork W2374778222 @default.
- W1512071535 hasRelatedWork W2529289829 @default.
- W1512071535 hasRelatedWork W2949510659 @default.
- W1512071535 hasRelatedWork W3103481709 @default.
- W1512071535 hasRelatedWork W4300413005 @default.
- W1512071535 isParatext "false" @default.
- W1512071535 isRetracted "false" @default.
- W1512071535 magId "1512071535" @default.
- W1512071535 workType "book-chapter" @default.