Matches in SemOpenAlex for { <https://semopenalex.org/work/W1512191736> ?p ?o ?g. }
- W1512191736 endingPage "152" @default.
- W1512191736 startingPage "127" @default.
- W1512191736 abstract "This paper compares the UK/US exchange rate forecasting performance of linear and nonlinear models based on monetary fundamentals, to a random walk (RW) model. Structural breaks are identified and taken into account. The exchange rate forecasting framework is also used for assessing the relative merits of the official Simple Sum and the weighted Divisia measures of money. Overall, there are four main findings. First, the majority of the models with fundamentals are able to beat the RW model in forecasting the UK/US exchange rate. Second, the most accurate forecasts of the UK/US exchange rate are obtained with a nonlinear model. Third, taking into account structural breaks reveals that the Divisia aggregate performs better than its Simple Sum counterpart. Finally, Divisia-based models provide more accurate forecasts than Simple Sum-based models provided they are constructed within a nonlinear framework." @default.
- W1512191736 created "2016-06-24" @default.
- W1512191736 creator A5023631884 @default.
- W1512191736 creator A5064846026 @default.
- W1512191736 creator A5077536143 @default.
- W1512191736 date "2010-12-10" @default.
- W1512191736 modified "2023-09-27" @default.
- W1512191736 title "FORECASTING THE UK/US EXCHANGE RATE WITH DIVISIA MONETARY MODELS AND NEURAL NETWORKS" @default.
- W1512191736 cites W1491711721 @default.
- W1512191736 cites W1572930125 @default.
- W1512191736 cites W1586335931 @default.
- W1512191736 cites W1587141723 @default.
- W1512191736 cites W1966593811 @default.
- W1512191736 cites W1970140636 @default.
- W1512191736 cites W1970746706 @default.
- W1512191736 cites W1971243386 @default.
- W1512191736 cites W1975696753 @default.
- W1512191736 cites W1982325928 @default.
- W1512191736 cites W1986122029 @default.
- W1512191736 cites W2001992115 @default.
- W1512191736 cites W2007163758 @default.
- W1512191736 cites W2022663805 @default.
- W1512191736 cites W2023185033 @default.
- W1512191736 cites W2035927022 @default.
- W1512191736 cites W2044599361 @default.
- W1512191736 cites W2047580622 @default.
- W1512191736 cites W2047634262 @default.
- W1512191736 cites W2048489440 @default.
- W1512191736 cites W2051713707 @default.
- W1512191736 cites W2105969659 @default.
- W1512191736 cites W2106100979 @default.
- W1512191736 cites W2106245083 @default.
- W1512191736 cites W2137873244 @default.
- W1512191736 cites W2137983211 @default.
- W1512191736 cites W2150546097 @default.
- W1512191736 cites W2157918707 @default.
- W1512191736 cites W2164079355 @default.
- W1512191736 cites W2326584307 @default.
- W1512191736 cites W2764432308 @default.
- W1512191736 cites W3124347368 @default.
- W1512191736 cites W4230206799 @default.
- W1512191736 cites W4256232074 @default.
- W1512191736 doi "https://doi.org/10.1111/j.1467-9485.2010.00538.x" @default.
- W1512191736 hasPublicationYear "2010" @default.
- W1512191736 type Work @default.
- W1512191736 sameAs 1512191736 @default.
- W1512191736 citedByCount "10" @default.
- W1512191736 countsByYear W15121917362013 @default.
- W1512191736 countsByYear W15121917362015 @default.
- W1512191736 countsByYear W15121917362016 @default.
- W1512191736 countsByYear W15121917362017 @default.
- W1512191736 countsByYear W15121917362018 @default.
- W1512191736 countsByYear W15121917362019 @default.
- W1512191736 countsByYear W15121917362021 @default.
- W1512191736 countsByYear W15121917362022 @default.
- W1512191736 crossrefType "journal-article" @default.
- W1512191736 hasAuthorship W1512191736A5023631884 @default.
- W1512191736 hasAuthorship W1512191736A5064846026 @default.
- W1512191736 hasAuthorship W1512191736A5077536143 @default.
- W1512191736 hasConcept C105795698 @default.
- W1512191736 hasConcept C111472728 @default.
- W1512191736 hasConcept C121332964 @default.
- W1512191736 hasConcept C126285488 @default.
- W1512191736 hasConcept C138885662 @default.
- W1512191736 hasConcept C139719470 @default.
- W1512191736 hasConcept C149782125 @default.
- W1512191736 hasConcept C158622935 @default.
- W1512191736 hasConcept C159985019 @default.
- W1512191736 hasConcept C162324750 @default.
- W1512191736 hasConcept C178399528 @default.
- W1512191736 hasConcept C186370098 @default.
- W1512191736 hasConcept C192562407 @default.
- W1512191736 hasConcept C2776988154 @default.
- W1512191736 hasConcept C2780586882 @default.
- W1512191736 hasConcept C29185160 @default.
- W1512191736 hasConcept C2992735868 @default.
- W1512191736 hasConcept C33923547 @default.
- W1512191736 hasConcept C4679612 @default.
- W1512191736 hasConcept C50551742 @default.
- W1512191736 hasConcept C62520636 @default.
- W1512191736 hasConcept C97615858 @default.
- W1512191736 hasConceptScore W1512191736C105795698 @default.
- W1512191736 hasConceptScore W1512191736C111472728 @default.
- W1512191736 hasConceptScore W1512191736C121332964 @default.
- W1512191736 hasConceptScore W1512191736C126285488 @default.
- W1512191736 hasConceptScore W1512191736C138885662 @default.
- W1512191736 hasConceptScore W1512191736C139719470 @default.
- W1512191736 hasConceptScore W1512191736C149782125 @default.
- W1512191736 hasConceptScore W1512191736C158622935 @default.
- W1512191736 hasConceptScore W1512191736C159985019 @default.
- W1512191736 hasConceptScore W1512191736C162324750 @default.
- W1512191736 hasConceptScore W1512191736C178399528 @default.
- W1512191736 hasConceptScore W1512191736C186370098 @default.
- W1512191736 hasConceptScore W1512191736C192562407 @default.
- W1512191736 hasConceptScore W1512191736C2776988154 @default.
- W1512191736 hasConceptScore W1512191736C2780586882 @default.
- W1512191736 hasConceptScore W1512191736C29185160 @default.
- W1512191736 hasConceptScore W1512191736C2992735868 @default.