Matches in SemOpenAlex for { <https://semopenalex.org/work/W151256638> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W151256638 endingPage "288" @default.
- W151256638 startingPage "271" @default.
- W151256638 abstract "For many word-oriented block ciphers, impossible differential (ID) and zero-correlation linear (ZC) cryptanalyses are among the most powerful attacks. Whereas ID cryptanalysis makes use of differentials which never occur, the ZC cryptanalysis relies on linear approximations with correlations equal to zero. While the key recovery parts of ID and ZC attacks may differ and are often specific to the target cipher, the underlying distinguishing properties frequently cover the same number of rounds. However, in some cases, the discrepancy between the best known IDs and ZC approximations is rather significant. At EUROCRYPT’13, a link between these two distinguishers has been presented. However, though being independent of the underling structure of the cipher, it is usually not useful for most known ID or ZC distinguishers. So despite the relevance of those attacks, the question of their equivalence or inequivalence has not been formally addressed so far in a constructive practical way. In this paper, we aim to bridge this gap in the understanding of the links between the ID and ZC properties. We tackle this problem at the example of two wide classes of ciphers, namely, Feistel- and Skipjack-type ciphers. As our major contribution, for those ciphers, we derive conditions for impossible differentials and zero-correlation approximations to cover the same number of rounds. Using the conditions, we prove an equivalence between ID and ZC distinguishers for type-I and type-II Feistel-type ciphers, for Rule-A and Rule-B Skipjack-type ciphers, as well as for TWINE and LBlock. Moreover, we show this equivalence for the Extended Generalised Feistel construction presented at SAC’13. We also use our theoretical results to argue for an inequivalence between ID and ZC distinguishers for a range of Skipjack-type ciphers." @default.
- W151256638 created "2016-06-24" @default.
- W151256638 creator A5046043197 @default.
- W151256638 creator A5048972311 @default.
- W151256638 creator A5049943235 @default.
- W151256638 date "2014-01-01" @default.
- W151256638 modified "2023-09-23" @default.
- W151256638 title "On the (In)Equivalence of Impossible Differential and Zero-Correlation Distinguishers for Feistel- and Skipjack-Type Ciphers" @default.
- W151256638 cites W1463173120 @default.
- W151256638 cites W148161500 @default.
- W151256638 cites W1497721867 @default.
- W151256638 cites W1541703086 @default.
- W151256638 cites W1590392383 @default.
- W151256638 cites W1596892067 @default.
- W151256638 cites W172003530 @default.
- W151256638 cites W182571705 @default.
- W151256638 cites W1841463954 @default.
- W151256638 cites W1916689065 @default.
- W151256638 cites W1964723977 @default.
- W151256638 cites W2057117247 @default.
- W151256638 cites W2072296411 @default.
- W151256638 cites W2072787545 @default.
- W151256638 cites W2083383916 @default.
- W151256638 cites W2123686329 @default.
- W151256638 cites W2138979989 @default.
- W151256638 cites W4241072010 @default.
- W151256638 cites W45372631 @default.
- W151256638 cites W57809933 @default.
- W151256638 cites W6580606 @default.
- W151256638 doi "https://doi.org/10.1007/978-3-319-07536-5_17" @default.
- W151256638 hasPublicationYear "2014" @default.
- W151256638 type Work @default.
- W151256638 sameAs 151256638 @default.
- W151256638 citedByCount "14" @default.
- W151256638 countsByYear W1512566382014 @default.
- W151256638 countsByYear W1512566382015 @default.
- W151256638 countsByYear W1512566382017 @default.
- W151256638 countsByYear W1512566382018 @default.
- W151256638 countsByYear W1512566382019 @default.
- W151256638 countsByYear W1512566382023 @default.
- W151256638 crossrefType "book-chapter" @default.
- W151256638 hasAuthorship W151256638A5046043197 @default.
- W151256638 hasAuthorship W151256638A5048972311 @default.
- W151256638 hasAuthorship W151256638A5049943235 @default.
- W151256638 hasConcept C118615104 @default.
- W151256638 hasConcept C151730666 @default.
- W151256638 hasConcept C2777299769 @default.
- W151256638 hasConcept C2780069185 @default.
- W151256638 hasConcept C33923547 @default.
- W151256638 hasConcept C86803240 @default.
- W151256638 hasConcept C94375191 @default.
- W151256638 hasConceptScore W151256638C118615104 @default.
- W151256638 hasConceptScore W151256638C151730666 @default.
- W151256638 hasConceptScore W151256638C2777299769 @default.
- W151256638 hasConceptScore W151256638C2780069185 @default.
- W151256638 hasConceptScore W151256638C33923547 @default.
- W151256638 hasConceptScore W151256638C86803240 @default.
- W151256638 hasConceptScore W151256638C94375191 @default.
- W151256638 hasLocation W1512566381 @default.
- W151256638 hasOpenAccess W151256638 @default.
- W151256638 hasPrimaryLocation W1512566381 @default.
- W151256638 hasRelatedWork W2018206907 @default.
- W151256638 hasRelatedWork W2041704557 @default.
- W151256638 hasRelatedWork W2090558690 @default.
- W151256638 hasRelatedWork W2105880240 @default.
- W151256638 hasRelatedWork W2123357356 @default.
- W151256638 hasRelatedWork W2349865494 @default.
- W151256638 hasRelatedWork W2372553222 @default.
- W151256638 hasRelatedWork W2393075133 @default.
- W151256638 hasRelatedWork W3101673024 @default.
- W151256638 hasRelatedWork W3157620392 @default.
- W151256638 isParatext "false" @default.
- W151256638 isRetracted "false" @default.
- W151256638 magId "151256638" @default.
- W151256638 workType "book-chapter" @default.