Matches in SemOpenAlex for { <https://semopenalex.org/work/W1513563721> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W1513563721 abstract "We introduce the notion of transference (k + 1)-tuples of strongly continuous mappings defined on an amenable group G. We use these tuples to transfer boundedness properties of multilinear operators from products of Lebesgue spaces into Lp and weak Lp. 0. Introduction and statement of results Fix an integer k ≥ 2. Let G be an amenable group and (M,dμ) a measure space. For 0 ≤ j ≤ k, let 0 0 α [ μ ( {x ∈M : |f(x)| > α} )] 1 p . Let us now consider the case where all the R ’s are given by actions on points. That is, for all 1 ≤ j ≤ k and for all u ∈ G, there exist maps U j u : M → M such that the representations R u have the special form (0.7) (R uf)(x) = f(U j u−1x). In this case, we replace condition (0.3) by (0.8) U j uvf = U j uU 0 v f for all j = 1, . . . , k, all u, v ∈ G, and all f ∈ D. We now have the following Theorem 2. Assume that the R u’s satisfy (0.1), (0.2), (0.7), and (0.8). Assume that T given by (0.5) extends to a bounded operator from L1(G)× · · · ×Lk(G)→ Lp,∞(G) with norm N . Then T can be extended to a bounded operator L1(M)×· · ·×Lk(M)→ Lp,∞(M) with a bound no larger than NC0C1 . . . Ck. Finally, observe that an immediate consequence of (0.3) is (0.9) R vR 0 v−1R j u = R j u 3 for all u, v ∈ G and 1 ≤ j ≤ k. 1. The proof of Theorem 1 We first assume that L = support(K) is compact in all variables and that K is bounded in absolute value by some constant CK on L. Once the required estimate is proved for such kernels K, with bounds independent of their support and their size, a density argument will give the conclusion for all kernels K. The amenability of G is equivalent to Leptin’s condition: given > 0 and B a compact subset of G, there exists an open subset V of G, such that B is compact and (1.1) λ(B−1V ) ≤ (1 + )λ(V ). For a given > 0 and L = support(K), fix such a V . Also fix f1, . . . , fk ∈ D. The multiplicative property of R v and (0.9) imply (1.2) T (f1, . . . , fk)(x) = ∫ Gk K(u1, . . . , uk)R 0 v [ k ∏ j=1 (R v−1ujfj) ] (x)dλ(u1) . . . dλ(uk) for all v in G. By the continuity of R v, we can “move” R 0 v outside the k-fold integral in (1.2). Since T (f1, . . . , fk) is in L (M), (with bounds that depend on K) and R v is bounded on L(M) uniformly in v ∈ G, the following estimate holds ∫ M |T (f1, . . . , fk)(x)| dμ(x) ≤ C 0 ∫ M ∣∣∣∣ ∫ Gk K(u1, . . . , uk) k ∏ j=1 ( R v−1ujfj ) (x) dλ(u1) . . . dλ(uk) ∣∣∣∣p dμ(x), (1.3) for all v in G. Next, we average inequality (1.3) over V and we interchange the order of 4 integration to the right hand side of the averaged inequality. We obtain ∫ M |T (f1, . . . , fk)(x)| dμ(x) ≤ C 0 λ(V ) ∫" @default.
- W1513563721 created "2016-06-24" @default.
- W1513563721 creator A5050905140 @default.
- W1513563721 creator A5054117127 @default.
- W1513563721 date "1996-06-01" @default.
- W1513563721 modified "2023-09-26" @default.
- W1513563721 title "Transference of multilinear Operators" @default.
- W1513563721 cites W1559907478 @default.
- W1513563721 cites W1871058307 @default.
- W1513563721 cites W814179658 @default.
- W1513563721 doi "https://doi.org/10.1215/ijm/1255986110" @default.
- W1513563721 hasPublicationYear "1996" @default.
- W1513563721 type Work @default.
- W1513563721 sameAs 1513563721 @default.
- W1513563721 citedByCount "11" @default.
- W1513563721 countsByYear W15135637212012 @default.
- W1513563721 countsByYear W15135637212013 @default.
- W1513563721 crossrefType "journal-article" @default.
- W1513563721 hasAuthorship W1513563721A5050905140 @default.
- W1513563721 hasAuthorship W1513563721A5054117127 @default.
- W1513563721 hasBestOaLocation W15135637211 @default.
- W1513563721 hasConcept C136119220 @default.
- W1513563721 hasConcept C202444582 @default.
- W1513563721 hasConcept C33923547 @default.
- W1513563721 hasConcept C84392682 @default.
- W1513563721 hasConceptScore W1513563721C136119220 @default.
- W1513563721 hasConceptScore W1513563721C202444582 @default.
- W1513563721 hasConceptScore W1513563721C33923547 @default.
- W1513563721 hasConceptScore W1513563721C84392682 @default.
- W1513563721 hasIssue "2" @default.
- W1513563721 hasLocation W15135637211 @default.
- W1513563721 hasOpenAccess W1513563721 @default.
- W1513563721 hasPrimaryLocation W15135637211 @default.
- W1513563721 hasRelatedWork W1988781821 @default.
- W1513563721 hasRelatedWork W2019736140 @default.
- W1513563721 hasRelatedWork W2045715842 @default.
- W1513563721 hasRelatedWork W2155111099 @default.
- W1513563721 hasRelatedWork W2162117590 @default.
- W1513563721 hasRelatedWork W2378668948 @default.
- W1513563721 hasRelatedWork W2381090395 @default.
- W1513563721 hasRelatedWork W2388678941 @default.
- W1513563721 hasRelatedWork W2390527899 @default.
- W1513563721 hasRelatedWork W2402195702 @default.
- W1513563721 hasVolume "40" @default.
- W1513563721 isParatext "false" @default.
- W1513563721 isRetracted "false" @default.
- W1513563721 magId "1513563721" @default.
- W1513563721 workType "article" @default.