Matches in SemOpenAlex for { <https://semopenalex.org/work/W1513885748> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1513885748 abstract "Whenever people have to choose seeing or buying an item among many others, they are based on their own ways of evaluating its characteristics (criteria) to understand better which one of the items meets their needs. Based on this argument, in this paper we develop personalized models for each user, according to their ratings on specific criteria, and we use them in multi-criteria recommender systems. We assume the overall ranking, which indicates users’ final decision, is closely related to their given value in each criterion separately. We compare user models created using neural networks and linear regression and we show, as expected from the implicit nonlinear combination of criteria, that neural networks based models achieve better performance. In continue we investigate several different approaches of collaborative filtering and matrix factorization to make recommendations. For this purpose we estimate users’ similarity by comparing their models. Experimental justification is obtained using the Yahoo! Movie dataset." @default.
- W1513885748 created "2016-06-24" @default.
- W1513885748 creator A5071264047 @default.
- W1513885748 creator A5080837998 @default.
- W1513885748 date "2014-01-01" @default.
- W1513885748 modified "2023-10-04" @default.
- W1513885748 title "Learning User Models in Multi-criteria Recommender Systems" @default.
- W1513885748 cites W1412447802 @default.
- W1513885748 cites W1488971269 @default.
- W1513885748 cites W1901236711 @default.
- W1513885748 cites W2039223548 @default.
- W1513885748 cites W2084127140 @default.
- W1513885748 cites W2085887099 @default.
- W1513885748 cites W2087814949 @default.
- W1513885748 cites W2098250642 @default.
- W1513885748 cites W2124591829 @default.
- W1513885748 cites W2403959208 @default.
- W1513885748 cites W4210651582 @default.
- W1513885748 cites W4245605774 @default.
- W1513885748 cites W59274497 @default.
- W1513885748 doi "https://doi.org/10.1007/978-3-319-11071-4_20" @default.
- W1513885748 hasPublicationYear "2014" @default.
- W1513885748 type Work @default.
- W1513885748 sameAs 1513885748 @default.
- W1513885748 citedByCount "3" @default.
- W1513885748 countsByYear W15138857482019 @default.
- W1513885748 countsByYear W15138857482020 @default.
- W1513885748 crossrefType "book-chapter" @default.
- W1513885748 hasAuthorship W1513885748A5071264047 @default.
- W1513885748 hasAuthorship W1513885748A5080837998 @default.
- W1513885748 hasConcept C103278499 @default.
- W1513885748 hasConcept C115961682 @default.
- W1513885748 hasConcept C119857082 @default.
- W1513885748 hasConcept C121332964 @default.
- W1513885748 hasConcept C124101348 @default.
- W1513885748 hasConcept C154945302 @default.
- W1513885748 hasConcept C158693339 @default.
- W1513885748 hasConcept C185592680 @default.
- W1513885748 hasConcept C189430467 @default.
- W1513885748 hasConcept C21569690 @default.
- W1513885748 hasConcept C23123220 @default.
- W1513885748 hasConcept C2776291640 @default.
- W1513885748 hasConcept C41008148 @default.
- W1513885748 hasConcept C42355184 @default.
- W1513885748 hasConcept C50644808 @default.
- W1513885748 hasConcept C55493867 @default.
- W1513885748 hasConcept C557471498 @default.
- W1513885748 hasConcept C62520636 @default.
- W1513885748 hasConcept C98184364 @default.
- W1513885748 hasConceptScore W1513885748C103278499 @default.
- W1513885748 hasConceptScore W1513885748C115961682 @default.
- W1513885748 hasConceptScore W1513885748C119857082 @default.
- W1513885748 hasConceptScore W1513885748C121332964 @default.
- W1513885748 hasConceptScore W1513885748C124101348 @default.
- W1513885748 hasConceptScore W1513885748C154945302 @default.
- W1513885748 hasConceptScore W1513885748C158693339 @default.
- W1513885748 hasConceptScore W1513885748C185592680 @default.
- W1513885748 hasConceptScore W1513885748C189430467 @default.
- W1513885748 hasConceptScore W1513885748C21569690 @default.
- W1513885748 hasConceptScore W1513885748C23123220 @default.
- W1513885748 hasConceptScore W1513885748C2776291640 @default.
- W1513885748 hasConceptScore W1513885748C41008148 @default.
- W1513885748 hasConceptScore W1513885748C42355184 @default.
- W1513885748 hasConceptScore W1513885748C50644808 @default.
- W1513885748 hasConceptScore W1513885748C55493867 @default.
- W1513885748 hasConceptScore W1513885748C557471498 @default.
- W1513885748 hasConceptScore W1513885748C62520636 @default.
- W1513885748 hasConceptScore W1513885748C98184364 @default.
- W1513885748 hasLocation W15138857481 @default.
- W1513885748 hasOpenAccess W1513885748 @default.
- W1513885748 hasPrimaryLocation W15138857481 @default.
- W1513885748 hasRelatedWork W1086548401 @default.
- W1513885748 hasRelatedWork W1994406194 @default.
- W1513885748 hasRelatedWork W2019316234 @default.
- W1513885748 hasRelatedWork W2087595482 @default.
- W1513885748 hasRelatedWork W2089115299 @default.
- W1513885748 hasRelatedWork W2114433479 @default.
- W1513885748 hasRelatedWork W2129553590 @default.
- W1513885748 hasRelatedWork W2141962398 @default.
- W1513885748 hasRelatedWork W2594080473 @default.
- W1513885748 hasRelatedWork W2727110939 @default.
- W1513885748 hasRelatedWork W2733516001 @default.
- W1513885748 hasRelatedWork W2742858030 @default.
- W1513885748 hasRelatedWork W2799579227 @default.
- W1513885748 hasRelatedWork W2800447881 @default.
- W1513885748 hasRelatedWork W2900722154 @default.
- W1513885748 hasRelatedWork W2947181730 @default.
- W1513885748 hasRelatedWork W2968764184 @default.
- W1513885748 hasRelatedWork W3136403187 @default.
- W1513885748 hasRelatedWork W3137718258 @default.
- W1513885748 hasRelatedWork W3166957876 @default.
- W1513885748 isParatext "false" @default.
- W1513885748 isRetracted "false" @default.
- W1513885748 magId "1513885748" @default.
- W1513885748 workType "book-chapter" @default.