Matches in SemOpenAlex for { <https://semopenalex.org/work/W1514441037> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1514441037 abstract "Computer-aided drug design (CADD) has become an indispensible component in modern drug discovery projects. The prediction of physicochemical properties and pharmacological properties of candidate compounds effectively increases the probability for drug candidates to pass latter phases of clinic trials. Ligand-based virtual screening exhibits advantages over structure-based drug design, in terms of its wide applicability and high computational efficiency. The established chemical repositories and reported bioassays form a gigantic knowledgebase to derive quantitative structure-activity relationship (QSAR) and structure-property relationship (QSPR). In addition, the rapid advance of machine learning techniques suggests new solutions for data-mining huge compound databases. In this thesis, a novel ligand classification algorithm, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS), was reported for the prediction of diverse categorical pharmacological properties. LiCABEDS was successfully applied to model 5-HT1A ligand functionality, ligand selectivity of cannabinoid receptor subtypes, and blood-brain-barrier (BBB) passage. LiCABEDS was implemented and integrated with graphical user interface, data import/export, automated model training/ prediction, and project management. Besides, a non-linear ligand classifier was proposed, using a novel Topomer kernel function in support vector machine. With the emphasis on green high-performance computing, graphics processing units are alternative platforms for computationally expensive tasks. A novel GPU algorithm was designed and implemented in order to accelerate the calculation of chemical similarities with dense-format molecular fingerprints. Finally, a compound acquisition algorithm was reported to construct structurally diverse screening library in order to enhance hit rates in high-throughput screening." @default.
- W1514441037 created "2016-06-24" @default.
- W1514441037 creator A5029221835 @default.
- W1514441037 date "2012-09-04" @default.
- W1514441037 modified "2023-09-27" @default.
- W1514441037 title "NOVEL ALGORITHMS AND TOOLS FOR LIGAND-BASED DRUG DESIGN" @default.
- W1514441037 hasPublicationYear "2012" @default.
- W1514441037 type Work @default.
- W1514441037 sameAs 1514441037 @default.
- W1514441037 citedByCount "0" @default.
- W1514441037 crossrefType "journal-article" @default.
- W1514441037 hasAuthorship W1514441037A5029221835 @default.
- W1514441037 hasConcept C103697762 @default.
- W1514441037 hasConcept C11413529 @default.
- W1514441037 hasConcept C119857082 @default.
- W1514441037 hasConcept C12267149 @default.
- W1514441037 hasConcept C124101348 @default.
- W1514441037 hasConcept C154945302 @default.
- W1514441037 hasConcept C164126121 @default.
- W1514441037 hasConcept C41008148 @default.
- W1514441037 hasConcept C46686674 @default.
- W1514441037 hasConcept C60644358 @default.
- W1514441037 hasConcept C74187038 @default.
- W1514441037 hasConcept C86803240 @default.
- W1514441037 hasConcept C95623464 @default.
- W1514441037 hasConceptScore W1514441037C103697762 @default.
- W1514441037 hasConceptScore W1514441037C11413529 @default.
- W1514441037 hasConceptScore W1514441037C119857082 @default.
- W1514441037 hasConceptScore W1514441037C12267149 @default.
- W1514441037 hasConceptScore W1514441037C124101348 @default.
- W1514441037 hasConceptScore W1514441037C154945302 @default.
- W1514441037 hasConceptScore W1514441037C164126121 @default.
- W1514441037 hasConceptScore W1514441037C41008148 @default.
- W1514441037 hasConceptScore W1514441037C46686674 @default.
- W1514441037 hasConceptScore W1514441037C60644358 @default.
- W1514441037 hasConceptScore W1514441037C74187038 @default.
- W1514441037 hasConceptScore W1514441037C86803240 @default.
- W1514441037 hasConceptScore W1514441037C95623464 @default.
- W1514441037 hasLocation W15144410371 @default.
- W1514441037 hasOpenAccess W1514441037 @default.
- W1514441037 hasPrimaryLocation W15144410371 @default.
- W1514441037 hasRelatedWork W122259079 @default.
- W1514441037 hasRelatedWork W2012438480 @default.
- W1514441037 hasRelatedWork W2033487468 @default.
- W1514441037 hasRelatedWork W2083862357 @default.
- W1514441037 hasRelatedWork W2107705485 @default.
- W1514441037 hasRelatedWork W2145546477 @default.
- W1514441037 hasRelatedWork W2168956852 @default.
- W1514441037 hasRelatedWork W2521156879 @default.
- W1514441037 hasRelatedWork W2806542061 @default.
- W1514441037 hasRelatedWork W2904798866 @default.
- W1514441037 hasRelatedWork W2983039884 @default.
- W1514441037 hasRelatedWork W2983579007 @default.
- W1514441037 hasRelatedWork W3012107310 @default.
- W1514441037 hasRelatedWork W3082360895 @default.
- W1514441037 hasRelatedWork W3092652809 @default.
- W1514441037 hasRelatedWork W3139522789 @default.
- W1514441037 hasRelatedWork W3186713117 @default.
- W1514441037 hasRelatedWork W3186878086 @default.
- W1514441037 hasRelatedWork W3211335638 @default.
- W1514441037 hasRelatedWork W74635577 @default.
- W1514441037 isParatext "false" @default.
- W1514441037 isRetracted "false" @default.
- W1514441037 magId "1514441037" @default.
- W1514441037 workType "article" @default.