Matches in SemOpenAlex for { <https://semopenalex.org/work/W1514546098> ?p ?o ?g. }
- W1514546098 abstract "Title of dissertation: Improving the Performance and Precision of Bioinformatics Algorithms Xue Wu, Doctor of Philosophy, 2008 Dissertation directed by: Professor Chau-Wen Tseng Department of Computer Science Recent advances in biotechnology have enabled scientists to generate and collect huge amounts of biological experimental data. Software tools for analyzing both genomic (DNA) and proteomic (protein) data with high speed and accuracy have thus become very important in modern biological research. This thesis presents several techniques for improving the performance and precision of bioinformatics algorithms used by biologists. Improvements in both the speed and cost of automated DNA sequencers have allowed scientists to sequence the DNA of an increasing number of organisms. One way biologists can take advantage of this genomic DNA data is to use it in conjunction with expressed sequence tag (EST) and cDNA sequences to find genes and their splice sites. This thesis describes ESTmapper, a tool designed to use an eager write-only top-down (WOTD) suffix tree to efficiently align DNA sequences against known genomes. Experimental results show that ESTmapper can be much faster than previous techniques for aligning and clustering DNA sequences, and produces alignments of comparable or better quality. Peptide identification by tandem mass spectrometry (MS/MS) is becoming the dominant high-throughput proteomics workflow for protein characterization in complex samples. Biologists currently rely on protein database search engines to identify peptides producing experimentally observed mass spectra. This thesis describes two approaches for improving peptide identification precision using statistical machine learning. HMMatch (HMM MS/MS Match) is a hidden Markov model approach to spectral matching, in which many examples of a peptide fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak’s intensity. Experimental results show that HMMatch can identify many peptides missed by traditional spectral matching and search engines. PepArML (Peptide Identification Arbiter by Machine Learning) is a machine learning based framework for improving the precision of peptide identification. It uses classification algorithms to effectively utilize spectra features and scores from multiple search engines in a single model-free framework that can be trained in an unsupervised manner. Experimental results show that PepArML can improve the sensitivity of peptide identification for several synthetic protein mixtures compared with individual search engines. Improving the Performance and Precision of Bioinformatic Algorithms" @default.
- W1514546098 created "2016-06-24" @default.
- W1514546098 creator A5022533710 @default.
- W1514546098 date "2008-08-25" @default.
- W1514546098 modified "2023-09-27" @default.
- W1514546098 title "Improving the performance and precision of bioinformatic algorithms" @default.
- W1514546098 cites W145805655 @default.
- W1514546098 cites W1544970479 @default.
- W1514546098 cites W1558211564 @default.
- W1514546098 cites W1570448133 @default.
- W1514546098 cites W1659313070 @default.
- W1514546098 cites W1743872520 @default.
- W1514546098 cites W1764926552 @default.
- W1514546098 cites W1839674003 @default.
- W1514546098 cites W1844250772 @default.
- W1514546098 cites W1956576553 @default.
- W1514546098 cites W1965998064 @default.
- W1514546098 cites W1968459892 @default.
- W1514546098 cites W1971887998 @default.
- W1514546098 cites W1974365473 @default.
- W1514546098 cites W1975450451 @default.
- W1514546098 cites W1977972652 @default.
- W1514546098 cites W1978576205 @default.
- W1514546098 cites W1981593008 @default.
- W1514546098 cites W1983345315 @default.
- W1514546098 cites W1986324942 @default.
- W1514546098 cites W1990061958 @default.
- W1514546098 cites W1991458239 @default.
- W1514546098 cites W1992595091 @default.
- W1514546098 cites W1995693931 @default.
- W1514546098 cites W1999618736 @default.
- W1514546098 cites W2001848433 @default.
- W1514546098 cites W2007019025 @default.
- W1514546098 cites W2009760554 @default.
- W1514546098 cites W2011783801 @default.
- W1514546098 cites W2015556811 @default.
- W1514546098 cites W2016701426 @default.
- W1514546098 cites W2024141877 @default.
- W1514546098 cites W2028421938 @default.
- W1514546098 cites W2032379826 @default.
- W1514546098 cites W2035283832 @default.
- W1514546098 cites W2047275456 @default.
- W1514546098 cites W2051795211 @default.
- W1514546098 cites W2053943711 @default.
- W1514546098 cites W2055043387 @default.
- W1514546098 cites W2055666215 @default.
- W1514546098 cites W2058135122 @default.
- W1514546098 cites W2064702087 @default.
- W1514546098 cites W2073069615 @default.
- W1514546098 cites W2073637473 @default.
- W1514546098 cites W2080921667 @default.
- W1514546098 cites W2088899342 @default.
- W1514546098 cites W2101128616 @default.
- W1514546098 cites W2101972919 @default.
- W1514546098 cites W2102122585 @default.
- W1514546098 cites W2104189907 @default.
- W1514546098 cites W2105696555 @default.
- W1514546098 cites W2106678197 @default.
- W1514546098 cites W2112078820 @default.
- W1514546098 cites W2112240593 @default.
- W1514546098 cites W2113765377 @default.
- W1514546098 cites W2114049512 @default.
- W1514546098 cites W2121904553 @default.
- W1514546098 cites W2123886946 @default.
- W1514546098 cites W2124907615 @default.
- W1514546098 cites W2125083784 @default.
- W1514546098 cites W2125838338 @default.
- W1514546098 cites W2129265015 @default.
- W1514546098 cites W2130706354 @default.
- W1514546098 cites W2136145671 @default.
- W1514546098 cites W2136280642 @default.
- W1514546098 cites W2137986897 @default.
- W1514546098 cites W2138270253 @default.
- W1514546098 cites W2150483253 @default.
- W1514546098 cites W2150746288 @default.
- W1514546098 cites W2151450179 @default.
- W1514546098 cites W2151831732 @default.
- W1514546098 cites W2155357014 @default.
- W1514546098 cites W2161136120 @default.
- W1514546098 cites W2161562001 @default.
- W1514546098 cites W2161811833 @default.
- W1514546098 cites W2166265186 @default.
- W1514546098 cites W3136323740 @default.
- W1514546098 hasPublicationYear "2008" @default.
- W1514546098 type Work @default.
- W1514546098 sameAs 1514546098 @default.
- W1514546098 citedByCount "3" @default.
- W1514546098 countsByYear W15145460982014 @default.
- W1514546098 countsByYear W15145460982017 @default.
- W1514546098 countsByYear W15145460982018 @default.
- W1514546098 crossrefType "dissertation" @default.
- W1514546098 hasAuthorship W1514546098A5022533710 @default.
- W1514546098 hasConcept C104317684 @default.
- W1514546098 hasConcept C11413529 @default.
- W1514546098 hasConcept C116834253 @default.
- W1514546098 hasConcept C119857082 @default.
- W1514546098 hasConcept C124101348 @default.
- W1514546098 hasConcept C154945302 @default.
- W1514546098 hasConcept C167625842 @default.
- W1514546098 hasConcept C177212765 @default.