Matches in SemOpenAlex for { <https://semopenalex.org/work/W1514957900> ?p ?o ?g. }
- W1514957900 abstract "When constructing a hydrological model at the macroscale (e.g., watershed scale), the structure of this model will inherently be uncertain because of many factors, including the lack of a robust hydrological theory at that scale. In this work, we assume that a suitable conceptual model structure for the hydrologic system has already been determined; that is, the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, the major hydrological processes and geometries of their interconnections have been identified, and the continuity equation (mass balance) has been assumed to hold. The remaining structural identification problem that remains, then, is to select the mathematical form of the dependence of the output on the inputs and state variables, so that a computational model can be constructed for making simulations and/or predictions of the system input‐state‐output behavior. The conventional approach to this problem is to preassume some fixed (and possibly erroneous) mathematical forms for the model output equations. We show instead how Bayesian data assimilation can be used to directly estimate (construct) the form of these mathematical relationships such that they are statistically consistent with macroscale measurements of the system inputs, outputs, and (if available) state variables. The resulting model has a stochastic rather than deterministic form and thereby properly represents both what we know (our certainty) and what we do not know (our uncertainty) about the underlying structure and behavior of the system. Further, the Bayesian approach enables us to merge prior beliefs in the form of preassumed model equations with information derived from the data to construct a posterior model. As a consequence, in regions of the model space for which observational data are available, the errors in preassumed mathematical form of the model can be corrected, improving model performance. For regions where no such data are available the “prior” theoretical assumptions about the model structure and behavior will dominate. The approach, entitled Bayesian estimation of structure, is used to estimate water balance models for the Leaf River Basin, Mississippi, at annual, monthly, and weekly time scales, conditioned on the assumption of a simple single‐state‐variable conceptual model structure. Inputs to the system are uncertain observed precipitation and potential evapotranspiration, and outputs are estimated probability distributions of actual evapotranspiration and streamflow discharge. Results show that the models estimated for the annual and monthly time scales perform quite well. However, model performance deteriorates for the weekly time scale, suggesting limitations in the assumed form of the conceptual model." @default.
- W1514957900 created "2016-06-24" @default.
- W1514957900 creator A5003155510 @default.
- W1514957900 creator A5051031328 @default.
- W1514957900 date "2009-02-10" @default.
- W1514957900 modified "2023-10-18" @default.
- W1514957900 title "Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation" @default.
- W1514957900 cites W1528242606 @default.
- W1514957900 cites W1580822624 @default.
- W1514957900 cites W169873142 @default.
- W1514957900 cites W1761851204 @default.
- W1514957900 cites W1965555277 @default.
- W1514957900 cites W1966901701 @default.
- W1514957900 cites W1968637865 @default.
- W1514957900 cites W1987017697 @default.
- W1514957900 cites W1994616231 @default.
- W1514957900 cites W2000356602 @default.
- W1514957900 cites W2015887535 @default.
- W1514957900 cites W2031365860 @default.
- W1514957900 cites W2079248362 @default.
- W1514957900 cites W2081346522 @default.
- W1514957900 cites W2086284932 @default.
- W1514957900 cites W2099347529 @default.
- W1514957900 cites W2115407788 @default.
- W1514957900 cites W2117319840 @default.
- W1514957900 cites W2117546666 @default.
- W1514957900 cites W2121032760 @default.
- W1514957900 cites W2124738823 @default.
- W1514957900 cites W2126736494 @default.
- W1514957900 cites W2136999619 @default.
- W1514957900 cites W2142127434 @default.
- W1514957900 cites W2148736439 @default.
- W1514957900 cites W2157539439 @default.
- W1514957900 cites W2160337655 @default.
- W1514957900 cites W2162719469 @default.
- W1514957900 cites W2996687946 @default.
- W1514957900 cites W4231517135 @default.
- W1514957900 cites W4233014035 @default.
- W1514957900 cites W4240108704 @default.
- W1514957900 cites W4252713891 @default.
- W1514957900 cites W4302434451 @default.
- W1514957900 cites W94143501 @default.
- W1514957900 doi "https://doi.org/10.1029/2007wr006749" @default.
- W1514957900 hasPublicationYear "2009" @default.
- W1514957900 type Work @default.
- W1514957900 sameAs 1514957900 @default.
- W1514957900 citedByCount "73" @default.
- W1514957900 countsByYear W15149579002012 @default.
- W1514957900 countsByYear W15149579002013 @default.
- W1514957900 countsByYear W15149579002014 @default.
- W1514957900 countsByYear W15149579002015 @default.
- W1514957900 countsByYear W15149579002016 @default.
- W1514957900 countsByYear W15149579002017 @default.
- W1514957900 countsByYear W15149579002018 @default.
- W1514957900 countsByYear W15149579002019 @default.
- W1514957900 countsByYear W15149579002020 @default.
- W1514957900 countsByYear W15149579002021 @default.
- W1514957900 countsByYear W15149579002022 @default.
- W1514957900 crossrefType "journal-article" @default.
- W1514957900 hasAuthorship W1514957900A5003155510 @default.
- W1514957900 hasAuthorship W1514957900A5051031328 @default.
- W1514957900 hasBestOaLocation W15149579001 @default.
- W1514957900 hasConcept C105795698 @default.
- W1514957900 hasConcept C107673813 @default.
- W1514957900 hasConcept C121332964 @default.
- W1514957900 hasConcept C126255220 @default.
- W1514957900 hasConcept C129537906 @default.
- W1514957900 hasConcept C130327152 @default.
- W1514957900 hasConcept C145420912 @default.
- W1514957900 hasConcept C153294291 @default.
- W1514957900 hasConcept C154945302 @default.
- W1514957900 hasConcept C160234255 @default.
- W1514957900 hasConcept C197129107 @default.
- W1514957900 hasConcept C23123220 @default.
- W1514957900 hasConcept C24552861 @default.
- W1514957900 hasConcept C2778755073 @default.
- W1514957900 hasConcept C28826006 @default.
- W1514957900 hasConcept C33923547 @default.
- W1514957900 hasConcept C41008148 @default.
- W1514957900 hasConcept C62520636 @default.
- W1514957900 hasConcept C76969082 @default.
- W1514957900 hasConcept C97355855 @default.
- W1514957900 hasConceptScore W1514957900C105795698 @default.
- W1514957900 hasConceptScore W1514957900C107673813 @default.
- W1514957900 hasConceptScore W1514957900C121332964 @default.
- W1514957900 hasConceptScore W1514957900C126255220 @default.
- W1514957900 hasConceptScore W1514957900C129537906 @default.
- W1514957900 hasConceptScore W1514957900C130327152 @default.
- W1514957900 hasConceptScore W1514957900C145420912 @default.
- W1514957900 hasConceptScore W1514957900C153294291 @default.
- W1514957900 hasConceptScore W1514957900C154945302 @default.
- W1514957900 hasConceptScore W1514957900C160234255 @default.
- W1514957900 hasConceptScore W1514957900C197129107 @default.
- W1514957900 hasConceptScore W1514957900C23123220 @default.
- W1514957900 hasConceptScore W1514957900C24552861 @default.
- W1514957900 hasConceptScore W1514957900C2778755073 @default.
- W1514957900 hasConceptScore W1514957900C28826006 @default.
- W1514957900 hasConceptScore W1514957900C33923547 @default.
- W1514957900 hasConceptScore W1514957900C41008148 @default.
- W1514957900 hasConceptScore W1514957900C62520636 @default.