Matches in SemOpenAlex for { <https://semopenalex.org/work/W1514989902> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1514989902 endingPage "252" @default.
- W1514989902 startingPage "227" @default.
- W1514989902 abstract "The problem of motion control and planning can be formulated as an optimization problem. In this paper we discuss an alternative view that casts the problem as one of probabilistic inference. In simple cases where the optimization problem can be solved analytically the inference view leads to equivalent solutions. However, when approximate methods are necessary to tackle the problem, the tight relation between optimization and probabilistic inference has fruitfully lead to a transfer of methods between both fields. Here we show that such a transfer is also possible in the realm of robotics. The general idea is that motion can be generated by fusing motion objectives (task constraints, goals, motion priors) by using probabilistic inference techniques. In realistic scenarios exact inference is infeasible (as is the analytic solution of the corresponding optimization problem) and the use of efficient approximate inference methods is a promising alternative to classical motion optimization methods. In this paper we first derive Bayesian control methods that are directly analogous to classical redundant motion rate control and optimal dynamic control (including operational space control). Then, by extending the probabilistic models to be Markovian models of the whole trajectory, we show that approximate probabilistic inference methods (message passing) efficiently compute solutions to trajectory optimization problems. Using Gaussian belief approximations and local linearization the algorithm becomes related to Differential Dynamic Programming (DDP) (aka. iterative Linear Quadratic Gaussian (iLQG))." @default.
- W1514989902 created "2016-06-24" @default.
- W1514989902 creator A5053974584 @default.
- W1514989902 creator A5065672819 @default.
- W1514989902 date "2010-01-01" @default.
- W1514989902 modified "2023-10-03" @default.
- W1514989902 title "A Bayesian View on Motor Control and Planning" @default.
- W1514989902 cites W1499557840 @default.
- W1514989902 cites W1533869956 @default.
- W1514989902 cites W1984178167 @default.
- W1514989902 cites W2015003349 @default.
- W1514989902 cites W2042803738 @default.
- W1514989902 cites W2096351669 @default.
- W1514989902 cites W2107464055 @default.
- W1514989902 cites W2130256951 @default.
- W1514989902 cites W2156243072 @default.
- W1514989902 cites W2169282664 @default.
- W1514989902 cites W2542762620 @default.
- W1514989902 cites W3104119384 @default.
- W1514989902 doi "https://doi.org/10.1007/978-3-642-05181-4_11" @default.
- W1514989902 hasPublicationYear "2010" @default.
- W1514989902 type Work @default.
- W1514989902 sameAs 1514989902 @default.
- W1514989902 citedByCount "29" @default.
- W1514989902 countsByYear W15149899022012 @default.
- W1514989902 countsByYear W15149899022013 @default.
- W1514989902 countsByYear W15149899022014 @default.
- W1514989902 countsByYear W15149899022016 @default.
- W1514989902 countsByYear W15149899022017 @default.
- W1514989902 countsByYear W15149899022018 @default.
- W1514989902 countsByYear W15149899022021 @default.
- W1514989902 countsByYear W15149899022023 @default.
- W1514989902 crossrefType "book-chapter" @default.
- W1514989902 hasAuthorship W1514989902A5053974584 @default.
- W1514989902 hasAuthorship W1514989902A5065672819 @default.
- W1514989902 hasConcept C107673813 @default.
- W1514989902 hasConcept C126255220 @default.
- W1514989902 hasConcept C137836250 @default.
- W1514989902 hasConcept C154945302 @default.
- W1514989902 hasConcept C160234255 @default.
- W1514989902 hasConcept C173246807 @default.
- W1514989902 hasConcept C2776214188 @default.
- W1514989902 hasConcept C2778049539 @default.
- W1514989902 hasConcept C33923547 @default.
- W1514989902 hasConcept C41008148 @default.
- W1514989902 hasConcept C49937458 @default.
- W1514989902 hasConcept C81074085 @default.
- W1514989902 hasConcept C90509273 @default.
- W1514989902 hasConcept C91575142 @default.
- W1514989902 hasConceptScore W1514989902C107673813 @default.
- W1514989902 hasConceptScore W1514989902C126255220 @default.
- W1514989902 hasConceptScore W1514989902C137836250 @default.
- W1514989902 hasConceptScore W1514989902C154945302 @default.
- W1514989902 hasConceptScore W1514989902C160234255 @default.
- W1514989902 hasConceptScore W1514989902C173246807 @default.
- W1514989902 hasConceptScore W1514989902C2776214188 @default.
- W1514989902 hasConceptScore W1514989902C2778049539 @default.
- W1514989902 hasConceptScore W1514989902C33923547 @default.
- W1514989902 hasConceptScore W1514989902C41008148 @default.
- W1514989902 hasConceptScore W1514989902C49937458 @default.
- W1514989902 hasConceptScore W1514989902C81074085 @default.
- W1514989902 hasConceptScore W1514989902C90509273 @default.
- W1514989902 hasConceptScore W1514989902C91575142 @default.
- W1514989902 hasLocation W15149899021 @default.
- W1514989902 hasOpenAccess W1514989902 @default.
- W1514989902 hasPrimaryLocation W15149899021 @default.
- W1514989902 hasRelatedWork W1843385398 @default.
- W1514989902 hasRelatedWork W2000789321 @default.
- W1514989902 hasRelatedWork W2106478918 @default.
- W1514989902 hasRelatedWork W2122656899 @default.
- W1514989902 hasRelatedWork W2183808997 @default.
- W1514989902 hasRelatedWork W2963058055 @default.
- W1514989902 hasRelatedWork W3182838102 @default.
- W1514989902 hasRelatedWork W3188540459 @default.
- W1514989902 hasRelatedWork W4312405383 @default.
- W1514989902 hasRelatedWork W4378435982 @default.
- W1514989902 isParatext "false" @default.
- W1514989902 isRetracted "false" @default.
- W1514989902 magId "1514989902" @default.
- W1514989902 workType "book-chapter" @default.