Matches in SemOpenAlex for { <https://semopenalex.org/work/W151505485> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W151505485 abstract "Az utobbi evtizedekben a szilardtest-fizikai kutatasok homlokterebe kerult a magneses vagy elektromos tulajdonsagok szempontjabol egy- vagy ketdimenziosnak tekinthető anyagok tanulmanyozasa. A palyazat soran ilyen rendszereket, azok fizikai tulajdonsagait vizsgaltuk analitikus es numerikus modszerekkel, illetve nagy erőfeszitest tettunk a jelenleg leghatekonyabbnak tűnő numerikus modszer, a sűrűsegmatrixot alkalmazo renormalasicsoport-modszer algoritmikus fejlesztesere a kvantuminformacio-elmelet eszkoztaranak felhasznalasaval, es lehetőve tettuk szennyezők szerepenek vizsgalatara. A terveknek es a palyazat cimenek megfelelően kulonboző modellek, peldaul spinletrak, altalanositott Hubbard-modellek, SU(n) szimmetriaju modellek fazisdiagramjat es a kvantumos fazisatalakulasok jelleget hataroztuk meg. A magas spinű rendszerekben ujfajta, egzotikus szuperfolyekony fazisok megjelenesere mutattunk ra magnesesen polarizacio jelenleteben, es javaslatot tettunk annak kiserleti megfigyelhetősegere ultrahideg atomok rendszereben. A vezetesi elektronok kozotti korrelaciokat is tartalmazo periodikus Anderson-Hubbard-modell eseten a Hubbard-fizika (Mott-atalakulas) es a Kondo-fizika (nehezfermionos viselkedes) versengeseben hataroztuk meg a kolcsonhatasok szerepet. A Bethe-feltevessel egzaktul megoldhato rendszerekre analitikusan levezettuk a szabadenergiahoz adodo vezető korrekciokat. | The physics of low-dimensional magnetic and fermionic systems is in the forefront of research in solid state physics. During the course of this project, we studied the physical properties of such systems both analytically and numerically, investing a lot of effort in the algorithmic development of the density-matrix renormalization-group (DMRG) method, using the concepts of quantum information theory. This allowed us, by combining DMRG with Wilson's numerical RG procedure, to extend the method to impurity problems. Following our research plan, we determined the phase diagram of various models, such as spin ladders, generalized Hubbard models and SU(n) symmetric models, and studied the quantum phase transitions in these systems. We have pointed out the possibility of exotic superfluid phases in magnetically polarized high-spin systems, and proposed experiments for their observation in ultracold atomic gases. We have studied the competition of Hubbard physics (Mott transition) and Kondo physics (heavy-fermion behavior) in extended periodic Anderson-Hubbard models, where correlations between conduction electrons and the interaction between conduction and localized electrons are taken into account. We have also determined the leading corrections to the free energy of exactly integrable systems." @default.
- W151505485 created "2016-06-24" @default.
- W151505485 creator A5006213157 @default.
- W151505485 creator A5012436618 @default.
- W151505485 creator A5022552233 @default.
- W151505485 creator A5052442581 @default.
- W151505485 creator A5062282330 @default.
- W151505485 creator A5070016694 @default.
- W151505485 creator A5075681844 @default.
- W151505485 date "2012-01-01" @default.
- W151505485 modified "2023-09-27" @default.
- W151505485 title "Kvantumos fázisátalakulások alacsony dimenziós mágneses és fermionrendszerekben = Quantum phase transitions in low-dimensional magnetic and fermionic systems" @default.
- W151505485 hasPublicationYear "2012" @default.
- W151505485 type Work @default.
- W151505485 sameAs 151505485 @default.
- W151505485 citedByCount "0" @default.
- W151505485 crossrefType "journal-article" @default.
- W151505485 hasAuthorship W151505485A5006213157 @default.
- W151505485 hasAuthorship W151505485A5012436618 @default.
- W151505485 hasAuthorship W151505485A5022552233 @default.
- W151505485 hasAuthorship W151505485A5052442581 @default.
- W151505485 hasAuthorship W151505485A5062282330 @default.
- W151505485 hasAuthorship W151505485A5070016694 @default.
- W151505485 hasAuthorship W151505485A5075681844 @default.
- W151505485 hasConcept C106074065 @default.
- W151505485 hasConcept C121332964 @default.
- W151505485 hasConcept C26873012 @default.
- W151505485 hasConcept C29547527 @default.
- W151505485 hasConcept C42704618 @default.
- W151505485 hasConcept C44280652 @default.
- W151505485 hasConcept C54101563 @default.
- W151505485 hasConcept C62520636 @default.
- W151505485 hasConcept C84114770 @default.
- W151505485 hasConcept C85906118 @default.
- W151505485 hasConcept C97355855 @default.
- W151505485 hasConceptScore W151505485C106074065 @default.
- W151505485 hasConceptScore W151505485C121332964 @default.
- W151505485 hasConceptScore W151505485C26873012 @default.
- W151505485 hasConceptScore W151505485C29547527 @default.
- W151505485 hasConceptScore W151505485C42704618 @default.
- W151505485 hasConceptScore W151505485C44280652 @default.
- W151505485 hasConceptScore W151505485C54101563 @default.
- W151505485 hasConceptScore W151505485C62520636 @default.
- W151505485 hasConceptScore W151505485C84114770 @default.
- W151505485 hasConceptScore W151505485C85906118 @default.
- W151505485 hasConceptScore W151505485C97355855 @default.
- W151505485 hasLocation W1515054851 @default.
- W151505485 hasOpenAccess W151505485 @default.
- W151505485 hasPrimaryLocation W1515054851 @default.
- W151505485 hasRelatedWork W1009347422 @default.
- W151505485 hasRelatedWork W155491801 @default.
- W151505485 hasRelatedWork W19782679 @default.
- W151505485 hasRelatedWork W49655057 @default.
- W151505485 hasRelatedWork W587530800 @default.
- W151505485 hasRelatedWork W950976031 @default.
- W151505485 hasRelatedWork W989665929 @default.
- W151505485 hasRelatedWork W997411141 @default.
- W151505485 hasRelatedWork W182067526 @default.
- W151505485 isParatext "false" @default.
- W151505485 isRetracted "false" @default.
- W151505485 magId "151505485" @default.
- W151505485 workType "article" @default.