Matches in SemOpenAlex for { <https://semopenalex.org/work/W1515133042> ?p ?o ?g. }
- W1515133042 endingPage "271" @default.
- W1515133042 startingPage "250" @default.
- W1515133042 abstract "SUMMARYThis article proposes to develop a prediction model for traffic flow using kernel learning methods such as support vector machine (SVM) and multiple kernel learning (MKL). Traffic flow prediction is a dynamic problem owing to its complex nature of multicriteria and nonlinearity. Influential factors of traffic flow were firstly investigated; five-point scale and entropy methods were employed to transfer the qualitative factors into quantitative ones and rank these factors, respectively. Then, SVM and MKL-based prediction models were developed, with the influential factors and the traffic flow as the input and output variables. The prediction capability of MKL was compared with SVM through a case study. It is proved that both the SVM and MKL perform well in prediction with regard to the accuracy rate and efficiency, and MKL is more preferable with a higher accuracy rate when under proper parameters setting. Therefore, MKL can enhance the decision-making of traffic flow prediction. Copyright © 2012 John Wiley & Sons, Ltd." @default.
- W1515133042 created "2016-06-24" @default.
- W1515133042 creator A5050042433 @default.
- W1515133042 creator A5083827132 @default.
- W1515133042 date "2012-12-19" @default.
- W1515133042 modified "2023-09-27" @default.
- W1515133042 title "Applying multiple kernel learning and support vector machine for solving the multicriteria and nonlinearity problems of traffic flow prediction" @default.
- W1515133042 cites W1595616029 @default.
- W1515133042 cites W1771307743 @default.
- W1515133042 cites W1838806972 @default.
- W1515133042 cites W1904632212 @default.
- W1515133042 cites W1971967689 @default.
- W1515133042 cites W1982576318 @default.
- W1515133042 cites W1990618276 @default.
- W1515133042 cites W1992341494 @default.
- W1515133042 cites W2012274504 @default.
- W1515133042 cites W2028988783 @default.
- W1515133042 cites W2029050814 @default.
- W1515133042 cites W2037931255 @default.
- W1515133042 cites W2039190250 @default.
- W1515133042 cites W2045153745 @default.
- W1515133042 cites W2049944637 @default.
- W1515133042 cites W2057720927 @default.
- W1515133042 cites W2061979451 @default.
- W1515133042 cites W2068247119 @default.
- W1515133042 cites W2072154567 @default.
- W1515133042 cites W2078325971 @default.
- W1515133042 cites W2104397400 @default.
- W1515133042 cites W2108679292 @default.
- W1515133042 cites W2115682519 @default.
- W1515133042 cites W2161842921 @default.
- W1515133042 cites W2333066506 @default.
- W1515133042 cites W4248654502 @default.
- W1515133042 doi "https://doi.org/10.1002/atr.1217" @default.
- W1515133042 hasPublicationYear "2012" @default.
- W1515133042 type Work @default.
- W1515133042 sameAs 1515133042 @default.
- W1515133042 citedByCount "10" @default.
- W1515133042 countsByYear W15151330422015 @default.
- W1515133042 countsByYear W15151330422016 @default.
- W1515133042 countsByYear W15151330422018 @default.
- W1515133042 countsByYear W15151330422019 @default.
- W1515133042 countsByYear W15151330422020 @default.
- W1515133042 countsByYear W15151330422021 @default.
- W1515133042 countsByYear W15151330422023 @default.
- W1515133042 crossrefType "journal-article" @default.
- W1515133042 hasAuthorship W1515133042A5050042433 @default.
- W1515133042 hasAuthorship W1515133042A5083827132 @default.
- W1515133042 hasConcept C114614502 @default.
- W1515133042 hasConcept C119857082 @default.
- W1515133042 hasConcept C121332964 @default.
- W1515133042 hasConcept C122280245 @default.
- W1515133042 hasConcept C12267149 @default.
- W1515133042 hasConcept C126255220 @default.
- W1515133042 hasConcept C154945302 @default.
- W1515133042 hasConcept C158622935 @default.
- W1515133042 hasConcept C207512268 @default.
- W1515133042 hasConcept C2524010 @default.
- W1515133042 hasConcept C33923547 @default.
- W1515133042 hasConcept C38349280 @default.
- W1515133042 hasConcept C38652104 @default.
- W1515133042 hasConcept C41008148 @default.
- W1515133042 hasConcept C62520636 @default.
- W1515133042 hasConcept C74193536 @default.
- W1515133042 hasConceptScore W1515133042C114614502 @default.
- W1515133042 hasConceptScore W1515133042C119857082 @default.
- W1515133042 hasConceptScore W1515133042C121332964 @default.
- W1515133042 hasConceptScore W1515133042C122280245 @default.
- W1515133042 hasConceptScore W1515133042C12267149 @default.
- W1515133042 hasConceptScore W1515133042C126255220 @default.
- W1515133042 hasConceptScore W1515133042C154945302 @default.
- W1515133042 hasConceptScore W1515133042C158622935 @default.
- W1515133042 hasConceptScore W1515133042C207512268 @default.
- W1515133042 hasConceptScore W1515133042C2524010 @default.
- W1515133042 hasConceptScore W1515133042C33923547 @default.
- W1515133042 hasConceptScore W1515133042C38349280 @default.
- W1515133042 hasConceptScore W1515133042C38652104 @default.
- W1515133042 hasConceptScore W1515133042C41008148 @default.
- W1515133042 hasConceptScore W1515133042C62520636 @default.
- W1515133042 hasConceptScore W1515133042C74193536 @default.
- W1515133042 hasIssue "3" @default.
- W1515133042 hasLocation W15151330421 @default.
- W1515133042 hasOpenAccess W1515133042 @default.
- W1515133042 hasPrimaryLocation W15151330421 @default.
- W1515133042 hasRelatedWork W1924599836 @default.
- W1515133042 hasRelatedWork W1996541855 @default.
- W1515133042 hasRelatedWork W2108697353 @default.
- W1515133042 hasRelatedWork W2127615859 @default.
- W1515133042 hasRelatedWork W2137362393 @default.
- W1515133042 hasRelatedWork W2169565408 @default.
- W1515133042 hasRelatedWork W2361876834 @default.
- W1515133042 hasRelatedWork W2399572917 @default.
- W1515133042 hasRelatedWork W3004569186 @default.
- W1515133042 hasRelatedWork W3195168932 @default.
- W1515133042 hasVolume "48" @default.
- W1515133042 isParatext "false" @default.
- W1515133042 isRetracted "false" @default.
- W1515133042 magId "1515133042" @default.