Matches in SemOpenAlex for { <https://semopenalex.org/work/W1516019427> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1516019427 abstract "This chapter proposal describes some artificial neural network (ANN) neuromodeling techniques used in association with powerful optimization tools, such as natural optimization algorithms and wavelet transforms, which can be used in a variety of applications in Engineering, for example, Electromagnetism (Cruz, 2009), Signal Processing (Peixoto et al., 2009b) and Pattern Recognition and Classification (Magalhaes et al., 2008). The application of ANN models associated with RF/microwave devices (Cruz et al., 2009a, 2009b; Silva et al., 2010a) and/or pattern recognition (Lopes et al., 2009) becomes usual. In this chapter, we present neuromodeling techniques based on one or two hidden layer feedforward neural network configurations and modular neural networks − trained with efficient algorithms, such as Resilient Backpropagation (RPROP) (Riedmiller & Braun, 1993), Levenberg-Marquardt (Hagan & Menhaj, 1999) and other hybrid learning algorithms (Magalhaes et al., 2008), in order to find the best training algorithm for such investigation, in terms of convergence and computational cost. The mathematical formulation and implementation details of neural network models, wavelet transforms and natural optimization algorithms are also presented. Natural optimization algorithms, which are stochastic population-based global search methods inspired in nature, such as genetic algorithm (GA) and particle swarm optimization (PSO) are effective for optimization problems with a large number of design variables and inexpensive cost function evaluation (Kennedy & Eberhart, 1995; R. Haupt & S. Haupt, 2004). However, the main computational drawback for optimization of nonlinear devices relies on the repetitive evaluation of numerically expensive cost functions (Haupt & Werner, 2007; Rahmat-Samii, 2003). Finding a way to shorten the optimization cycle is highly desirable. In case of GA, for example, several schemes are available in order to improve its performance, such as: the use of fast full-wave methods, micro-genetic algorithm, which aims to reduce the population size, and parallel GA using parallel computation (R. Haupt & S. Haupt, 2004; Haupt & Werner, 2007). Therefore, this chapter" @default.
- W1516019427 created "2016-06-24" @default.
- W1516019427 creator A5021391579 @default.
- W1516019427 creator A5027801398 @default.
- W1516019427 creator A5039082181 @default.
- W1516019427 date "2011-04-11" @default.
- W1516019427 modified "2023-09-27" @default.
- W1516019427 title "Artificial Neural Networks and Efficient Optimization Techniques for Applications in Engineering" @default.
- W1516019427 cites W1496929357 @default.
- W1516019427 cites W1509279834 @default.
- W1516019427 cites W1510992165 @default.
- W1516019427 cites W1544329015 @default.
- W1516019427 cites W1946797170 @default.
- W1516019427 cites W1995341919 @default.
- W1516019427 cites W2040870580 @default.
- W1516019427 cites W2050362442 @default.
- W1516019427 cites W2053487665 @default.
- W1516019427 cites W2080841390 @default.
- W1516019427 cites W2087834928 @default.
- W1516019427 cites W2093257419 @default.
- W1516019427 cites W2098602977 @default.
- W1516019427 cites W2098910534 @default.
- W1516019427 cites W2104572963 @default.
- W1516019427 cites W2104765221 @default.
- W1516019427 cites W2106211018 @default.
- W1516019427 cites W2110312393 @default.
- W1516019427 cites W2115755118 @default.
- W1516019427 cites W2120600749 @default.
- W1516019427 cites W2121422001 @default.
- W1516019427 cites W2124776405 @default.
- W1516019427 cites W2124868070 @default.
- W1516019427 cites W2143908786 @default.
- W1516019427 cites W2150437070 @default.
- W1516019427 cites W2150884987 @default.
- W1516019427 cites W2155482699 @default.
- W1516019427 cites W2156344194 @default.
- W1516019427 cites W2158729172 @default.
- W1516019427 cites W2164831575 @default.
- W1516019427 cites W2169609348 @default.
- W1516019427 cites W2170380288 @default.
- W1516019427 cites W2265188304 @default.
- W1516019427 cites W2505292267 @default.
- W1516019427 cites W2543580944 @default.
- W1516019427 cites W2585663194 @default.
- W1516019427 cites W2744334151 @default.
- W1516019427 cites W2766736793 @default.
- W1516019427 cites W2947960725 @default.
- W1516019427 cites W3207342693 @default.
- W1516019427 cites W589820874 @default.
- W1516019427 cites W624967977 @default.
- W1516019427 cites W96008489 @default.
- W1516019427 doi "https://doi.org/10.5772/15293" @default.
- W1516019427 hasPublicationYear "2011" @default.
- W1516019427 type Work @default.
- W1516019427 sameAs 1516019427 @default.
- W1516019427 citedByCount "9" @default.
- W1516019427 countsByYear W15160194272012 @default.
- W1516019427 countsByYear W15160194272014 @default.
- W1516019427 countsByYear W15160194272015 @default.
- W1516019427 countsByYear W15160194272016 @default.
- W1516019427 countsByYear W15160194272017 @default.
- W1516019427 countsByYear W15160194272019 @default.
- W1516019427 countsByYear W15160194272023 @default.
- W1516019427 crossrefType "book-chapter" @default.
- W1516019427 hasAuthorship W1516019427A5021391579 @default.
- W1516019427 hasAuthorship W1516019427A5027801398 @default.
- W1516019427 hasAuthorship W1516019427A5039082181 @default.
- W1516019427 hasBestOaLocation W15160194271 @default.
- W1516019427 hasConcept C127413603 @default.
- W1516019427 hasConcept C154945302 @default.
- W1516019427 hasConcept C183696295 @default.
- W1516019427 hasConcept C41008148 @default.
- W1516019427 hasConcept C50644808 @default.
- W1516019427 hasConceptScore W1516019427C127413603 @default.
- W1516019427 hasConceptScore W1516019427C154945302 @default.
- W1516019427 hasConceptScore W1516019427C183696295 @default.
- W1516019427 hasConceptScore W1516019427C41008148 @default.
- W1516019427 hasConceptScore W1516019427C50644808 @default.
- W1516019427 hasLocation W15160194271 @default.
- W1516019427 hasLocation W15160194272 @default.
- W1516019427 hasOpenAccess W1516019427 @default.
- W1516019427 hasPrimaryLocation W15160194271 @default.
- W1516019427 hasRelatedWork W1968892634 @default.
- W1516019427 hasRelatedWork W2159443810 @default.
- W1516019427 hasRelatedWork W2369016145 @default.
- W1516019427 hasRelatedWork W2385858717 @default.
- W1516019427 hasRelatedWork W2386387936 @default.
- W1516019427 hasRelatedWork W3001020386 @default.
- W1516019427 hasRelatedWork W3107474891 @default.
- W1516019427 hasRelatedWork W4362499384 @default.
- W1516019427 hasRelatedWork W644753246 @default.
- W1516019427 hasRelatedWork W1629725936 @default.
- W1516019427 isParatext "false" @default.
- W1516019427 isRetracted "false" @default.
- W1516019427 magId "1516019427" @default.
- W1516019427 workType "book-chapter" @default.