Matches in SemOpenAlex for { <https://semopenalex.org/work/W1517202054> ?p ?o ?g. }
- W1517202054 abstract "This paper presents a novel training algorithm for Gaussian Mixture Model (GMM)-based Voice Conversion (VC). One of the advantages of GMM-based VC is computationally efficient conversion processing enabling to achieve real-time VC applications. On the other hand, the quality of the converted speech is still significantly worse than that of natural speech. In order to address this problem while preserving the computationally efficient conversion processing, the proposed training method enables 1) to use a consistent optimization criterion between training and conversion and 2) to compensate a Modulation Spectrum (MS) of the converted parameter trajectory as a feature sensitively correlated with over-smoothing effects causing quality degradation of the converted speech. The experimental results demonstrate that the proposed algorithm yields significant improvements in term of both the converted speech quality and the conversion accuracy for speaker individuality compared to the basic training algorithm." @default.
- W1517202054 created "2016-06-24" @default.
- W1517202054 creator A5013050263 @default.
- W1517202054 creator A5020994673 @default.
- W1517202054 creator A5046364646 @default.
- W1517202054 creator A5078330211 @default.
- W1517202054 date "2015-04-01" @default.
- W1517202054 modified "2023-09-23" @default.
- W1517202054 title "Modulation spectrum-constrained trajectory training algorithm for GMM-based Voice Conversion" @default.
- W1517202054 cites W1523372075 @default.
- W1517202054 cites W1596263485 @default.
- W1517202054 cites W1935012542 @default.
- W1517202054 cites W1979449467 @default.
- W1517202054 cites W1987992317 @default.
- W1517202054 cites W1990967464 @default.
- W1517202054 cites W1991682319 @default.
- W1517202054 cites W2005438552 @default.
- W1517202054 cites W2007023536 @default.
- W1517202054 cites W2019849101 @default.
- W1517202054 cites W2031321541 @default.
- W1517202054 cites W2049686551 @default.
- W1517202054 cites W2056279026 @default.
- W1517202054 cites W2075012882 @default.
- W1517202054 cites W2111284386 @default.
- W1517202054 cites W2116257577 @default.
- W1517202054 cites W2120605154 @default.
- W1517202054 cites W2143490509 @default.
- W1517202054 cites W2154920538 @default.
- W1517202054 cites W2156142001 @default.
- W1517202054 cites W2242005248 @default.
- W1517202054 cites W2395578248 @default.
- W1517202054 cites W2577042574 @default.
- W1517202054 cites W2943553228 @default.
- W1517202054 doi "https://doi.org/10.1109/icassp.2015.7178894" @default.
- W1517202054 hasPublicationYear "2015" @default.
- W1517202054 type Work @default.
- W1517202054 sameAs 1517202054 @default.
- W1517202054 citedByCount "21" @default.
- W1517202054 countsByYear W15172020542015 @default.
- W1517202054 countsByYear W15172020542016 @default.
- W1517202054 countsByYear W15172020542017 @default.
- W1517202054 countsByYear W15172020542018 @default.
- W1517202054 countsByYear W15172020542019 @default.
- W1517202054 countsByYear W15172020542020 @default.
- W1517202054 countsByYear W15172020542021 @default.
- W1517202054 crossrefType "proceedings-article" @default.
- W1517202054 hasAuthorship W1517202054A5013050263 @default.
- W1517202054 hasAuthorship W1517202054A5020994673 @default.
- W1517202054 hasAuthorship W1517202054A5046364646 @default.
- W1517202054 hasAuthorship W1517202054A5078330211 @default.
- W1517202054 hasConcept C107038049 @default.
- W1517202054 hasConcept C11413529 @default.
- W1517202054 hasConcept C121332964 @default.
- W1517202054 hasConcept C123079801 @default.
- W1517202054 hasConcept C1276947 @default.
- W1517202054 hasConcept C13662910 @default.
- W1517202054 hasConcept C138885662 @default.
- W1517202054 hasConcept C154945302 @default.
- W1517202054 hasConcept C204201278 @default.
- W1517202054 hasConcept C2776401178 @default.
- W1517202054 hasConcept C28490314 @default.
- W1517202054 hasConcept C31972630 @default.
- W1517202054 hasConcept C3770464 @default.
- W1517202054 hasConcept C41008148 @default.
- W1517202054 hasConcept C41895202 @default.
- W1517202054 hasConcept C61224824 @default.
- W1517202054 hasConcept C61328038 @default.
- W1517202054 hasConceptScore W1517202054C107038049 @default.
- W1517202054 hasConceptScore W1517202054C11413529 @default.
- W1517202054 hasConceptScore W1517202054C121332964 @default.
- W1517202054 hasConceptScore W1517202054C123079801 @default.
- W1517202054 hasConceptScore W1517202054C1276947 @default.
- W1517202054 hasConceptScore W1517202054C13662910 @default.
- W1517202054 hasConceptScore W1517202054C138885662 @default.
- W1517202054 hasConceptScore W1517202054C154945302 @default.
- W1517202054 hasConceptScore W1517202054C204201278 @default.
- W1517202054 hasConceptScore W1517202054C2776401178 @default.
- W1517202054 hasConceptScore W1517202054C28490314 @default.
- W1517202054 hasConceptScore W1517202054C31972630 @default.
- W1517202054 hasConceptScore W1517202054C3770464 @default.
- W1517202054 hasConceptScore W1517202054C41008148 @default.
- W1517202054 hasConceptScore W1517202054C41895202 @default.
- W1517202054 hasConceptScore W1517202054C61224824 @default.
- W1517202054 hasConceptScore W1517202054C61328038 @default.
- W1517202054 hasLocation W15172020541 @default.
- W1517202054 hasOpenAccess W1517202054 @default.
- W1517202054 hasPrimaryLocation W15172020541 @default.
- W1517202054 hasRelatedWork W1509691205 @default.
- W1517202054 hasRelatedWork W1977362459 @default.
- W1517202054 hasRelatedWork W2042795122 @default.
- W1517202054 hasRelatedWork W2049686551 @default.
- W1517202054 hasRelatedWork W2056852181 @default.
- W1517202054 hasRelatedWork W2057609679 @default.
- W1517202054 hasRelatedWork W2086796102 @default.
- W1517202054 hasRelatedWork W2102003408 @default.
- W1517202054 hasRelatedWork W2107860279 @default.
- W1517202054 hasRelatedWork W2120605154 @default.
- W1517202054 hasRelatedWork W2121387787 @default.
- W1517202054 hasRelatedWork W2123003832 @default.
- W1517202054 hasRelatedWork W2136166660 @default.