Matches in SemOpenAlex for { <https://semopenalex.org/work/W1517997934> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1517997934 endingPage "268" @default.
- W1517997934 startingPage "231" @default.
- W1517997934 abstract "In recent years, topics such as fraud detection and fraud prevention have received a lot of attention on the research front, in particular from payment card issuers. The reason for this increase in research activity can be attributed to the huge annual financial losses incurred by card issuers due to fraudulent use of their card products. A successful strategy for dealing with fraud can quite literally mean millions of dollars in savings per year on operational costs. Artificial neural networks have come to the front as an at least partially successful method for fraud detection. The success of neural networks in this field is, however, limited by their underlying design - a feedforward neural network is simply a static mapping of input vectors to output vectors, and as such is incapable of adapting to changing shopping profiles of legitimate card holders. Thus, fraud detection systems in use today are plagued by misclassifications and their usefulness is hampered by high false positive rates. We address this problem by proposing the use of a dynamic machine learning method in an attempt to model the time series inherent in sequences of same card transactions. We believe that, instead of looking at individual transactions, it makes more sense to look at sequences of transactions as a whole; a technique that can model time in this context will be more robust to minor shifts in legitimate shopping behaviour. In order to form a clear basis for comparison, we did some investigative research on feature selection, preprocessing, and on the selection of performance measures; the latter will facilitate comparison of results obtained by applying machine learning methods to the biased data sets largely associated with fraud detection. We ran experiments on real world credit card transactional data using two innovative machine learning techniques: the support vector machine (SVM) and the long short-term memory recurrent neural network (LSTM)." @default.
- W1517997934 created "2016-06-24" @default.
- W1517997934 creator A5019344470 @default.
- W1517997934 creator A5030608087 @default.
- W1517997934 date "2009-01-01" @default.
- W1517997934 modified "2023-09-27" @default.
- W1517997934 title "Credit Card Transactions, Fraud Detection, and Machine Learning: Modelling Time with LSTM Recurrent Neural Networks" @default.
- W1517997934 cites W2064675550 @default.
- W1517997934 cites W2087347434 @default.
- W1517997934 cites W2118286367 @default.
- W1517997934 cites W2136848157 @default.
- W1517997934 cites W2139212933 @default.
- W1517997934 cites W2147568880 @default.
- W1517997934 cites W4254816979 @default.
- W1517997934 doi "https://doi.org/10.1007/978-3-642-04003-0_10" @default.
- W1517997934 hasPublicationYear "2009" @default.
- W1517997934 type Work @default.
- W1517997934 sameAs 1517997934 @default.
- W1517997934 citedByCount "33" @default.
- W1517997934 countsByYear W15179979342012 @default.
- W1517997934 countsByYear W15179979342013 @default.
- W1517997934 countsByYear W15179979342015 @default.
- W1517997934 countsByYear W15179979342016 @default.
- W1517997934 countsByYear W15179979342017 @default.
- W1517997934 countsByYear W15179979342018 @default.
- W1517997934 countsByYear W15179979342019 @default.
- W1517997934 countsByYear W15179979342020 @default.
- W1517997934 countsByYear W15179979342021 @default.
- W1517997934 countsByYear W15179979342022 @default.
- W1517997934 countsByYear W15179979342023 @default.
- W1517997934 crossrefType "book-chapter" @default.
- W1517997934 hasAuthorship W1517997934A5019344470 @default.
- W1517997934 hasAuthorship W1517997934A5030608087 @default.
- W1517997934 hasConcept C10138342 @default.
- W1517997934 hasConcept C119857082 @default.
- W1517997934 hasConcept C136764020 @default.
- W1517997934 hasConcept C138170105 @default.
- W1517997934 hasConcept C144133560 @default.
- W1517997934 hasConcept C145097563 @default.
- W1517997934 hasConcept C148483581 @default.
- W1517997934 hasConcept C151730666 @default.
- W1517997934 hasConcept C154945302 @default.
- W1517997934 hasConcept C202444582 @default.
- W1517997934 hasConcept C2779343474 @default.
- W1517997934 hasConcept C2780747020 @default.
- W1517997934 hasConcept C2983355114 @default.
- W1517997934 hasConcept C33923547 @default.
- W1517997934 hasConcept C41008148 @default.
- W1517997934 hasConcept C50644808 @default.
- W1517997934 hasConcept C86803240 @default.
- W1517997934 hasConcept C9652623 @default.
- W1517997934 hasConceptScore W1517997934C10138342 @default.
- W1517997934 hasConceptScore W1517997934C119857082 @default.
- W1517997934 hasConceptScore W1517997934C136764020 @default.
- W1517997934 hasConceptScore W1517997934C138170105 @default.
- W1517997934 hasConceptScore W1517997934C144133560 @default.
- W1517997934 hasConceptScore W1517997934C145097563 @default.
- W1517997934 hasConceptScore W1517997934C148483581 @default.
- W1517997934 hasConceptScore W1517997934C151730666 @default.
- W1517997934 hasConceptScore W1517997934C154945302 @default.
- W1517997934 hasConceptScore W1517997934C202444582 @default.
- W1517997934 hasConceptScore W1517997934C2779343474 @default.
- W1517997934 hasConceptScore W1517997934C2780747020 @default.
- W1517997934 hasConceptScore W1517997934C2983355114 @default.
- W1517997934 hasConceptScore W1517997934C33923547 @default.
- W1517997934 hasConceptScore W1517997934C41008148 @default.
- W1517997934 hasConceptScore W1517997934C50644808 @default.
- W1517997934 hasConceptScore W1517997934C86803240 @default.
- W1517997934 hasConceptScore W1517997934C9652623 @default.
- W1517997934 hasLocation W15179979341 @default.
- W1517997934 hasOpenAccess W1517997934 @default.
- W1517997934 hasPrimaryLocation W15179979341 @default.
- W1517997934 hasRelatedWork W2751515787 @default.
- W1517997934 hasRelatedWork W3134049939 @default.
- W1517997934 hasRelatedWork W3148119887 @default.
- W1517997934 hasRelatedWork W3185564348 @default.
- W1517997934 hasRelatedWork W4213059755 @default.
- W1517997934 hasRelatedWork W4213247184 @default.
- W1517997934 hasRelatedWork W4214489515 @default.
- W1517997934 hasRelatedWork W4220778143 @default.
- W1517997934 hasRelatedWork W4327511089 @default.
- W1517997934 hasRelatedWork W4361238142 @default.
- W1517997934 isParatext "false" @default.
- W1517997934 isRetracted "false" @default.
- W1517997934 magId "1517997934" @default.
- W1517997934 workType "book-chapter" @default.