Matches in SemOpenAlex for { <https://semopenalex.org/work/W1518328082> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1518328082 abstract "Today, the light absorber of almost all installed photovoltaic (PV) modules is made of single or multi crystalline silicon (c-Si or mc-Si). However, due to the reduced costs per installed power, a trend exists towards thin film cells since a few years. Thus, the future's aim of this work's investigations is to realize printable PV cells with a thin film absorber made from Si nanoparticles (NP) solely. Si is chosen, because it is non-toxic and an abundant resource. The particle form is selected, because NP can be dispersed, thus making them printable, resulting in a high material-efficiency for the future application. As a first step, in this work c-Si substrates were coated with highly doped Si NP and via laser annealing, a doped substrate layer was created. For the annealing, a continuous wave, infra red (IR, wave length λ = 808nm) and a pulsed, ultra violet (UV, λ = 248nm) laser were available. For both lasers, electrical (four point conductance) and analytical (SIMS / ECV) measurements proved a successful incorporation of dopants into the substrate. While the IR laser created doping depths of approx. 100µm, for the UV laser they were determined to be approx. 200nm. By applying this method on doped substrates and complementary doped NP, pn-junctions could be realized that exhibit a PV effect. The thin emitter layer (≈doping depth) is one important reason for the higher maximum conversion efficiencies η of the UV laser annealed samples (η ≈ 6%) when compared to the IR laser annealed ones (η ≈ 2%). Chemical and structural defects are supposed to be the major reason for the low conversion efficiencies when compared with c-Si PV. By reducing them, a considerable efficiency increase is expected. Due to the too big doping depth, the IR laser was excluded from further experiments. For the production of PV cells, the UV laser NP doping method may also be interesting to replace the aluminium (Al) from the standard back surface doping process: A reduction of the substrate thickness of future PV generations, would lead to a bending of the substrate due to the different thermal expansion coefficients of Si and Al. Using the presented technique, a back surface doping could be realized on semi-finished mc-Si PV cells; however, so far it is not certain, whether this technique can really create similar or even higher efficiencies as the standard process. Nevertheless, this method can be interesting for the PV industry already today, because a substrate bending should be prevented and an independent handling of the front and the back side is possible. After the feasibility of Si substrates doping, fundamental experiments were conducted to create pn-junctions form Si NP solely, in a second step. Thus, pn-samples were created by spark-plasma sintering (SPS) of p- on n-type NP material on the one hand and by successive spin coating of p- and n-type dispersions and their laser annealing on the other hand. While the SPS experiments primary aimed to get a directer insight of the pn-junction created only from NP, the spin coating method represents a much more application oriented way. In both cases, an electromotive force was measured, whereas it is not finally clarified, whether its origin really is PV. However, the success to realize conductive layers on insulating substrates is interpreted as a first step towards the future's aim of printable Si PV from NP." @default.
- W1518328082 created "2016-06-24" @default.
- W1518328082 creator A5004413894 @default.
- W1518328082 date "2015-02-18" @default.
- W1518328082 modified "2023-09-27" @default.
- W1518328082 title "Photovoltaics with Silicon Nanoparticles" @default.
- W1518328082 hasPublicationYear "2015" @default.
- W1518328082 type Work @default.
- W1518328082 sameAs 1518328082 @default.
- W1518328082 citedByCount "0" @default.
- W1518328082 crossrefType "dissertation" @default.
- W1518328082 hasAuthorship W1518328082A5004413894 @default.
- W1518328082 hasConcept C111368507 @default.
- W1518328082 hasConcept C119599485 @default.
- W1518328082 hasConcept C120665830 @default.
- W1518328082 hasConcept C121332964 @default.
- W1518328082 hasConcept C127313418 @default.
- W1518328082 hasConcept C127413603 @default.
- W1518328082 hasConcept C155672457 @default.
- W1518328082 hasConcept C159985019 @default.
- W1518328082 hasConcept C171250308 @default.
- W1518328082 hasConcept C19067145 @default.
- W1518328082 hasConcept C191952053 @default.
- W1518328082 hasConcept C192562407 @default.
- W1518328082 hasConcept C206991015 @default.
- W1518328082 hasConcept C2777289219 @default.
- W1518328082 hasConcept C2777855556 @default.
- W1518328082 hasConcept C2780824857 @default.
- W1518328082 hasConcept C41291067 @default.
- W1518328082 hasConcept C49040817 @default.
- W1518328082 hasConcept C520434653 @default.
- W1518328082 hasConcept C542589376 @default.
- W1518328082 hasConcept C544956773 @default.
- W1518328082 hasConcept C57863236 @default.
- W1518328082 hasConceptScore W1518328082C111368507 @default.
- W1518328082 hasConceptScore W1518328082C119599485 @default.
- W1518328082 hasConceptScore W1518328082C120665830 @default.
- W1518328082 hasConceptScore W1518328082C121332964 @default.
- W1518328082 hasConceptScore W1518328082C127313418 @default.
- W1518328082 hasConceptScore W1518328082C127413603 @default.
- W1518328082 hasConceptScore W1518328082C155672457 @default.
- W1518328082 hasConceptScore W1518328082C159985019 @default.
- W1518328082 hasConceptScore W1518328082C171250308 @default.
- W1518328082 hasConceptScore W1518328082C19067145 @default.
- W1518328082 hasConceptScore W1518328082C191952053 @default.
- W1518328082 hasConceptScore W1518328082C192562407 @default.
- W1518328082 hasConceptScore W1518328082C206991015 @default.
- W1518328082 hasConceptScore W1518328082C2777289219 @default.
- W1518328082 hasConceptScore W1518328082C2777855556 @default.
- W1518328082 hasConceptScore W1518328082C2780824857 @default.
- W1518328082 hasConceptScore W1518328082C41291067 @default.
- W1518328082 hasConceptScore W1518328082C49040817 @default.
- W1518328082 hasConceptScore W1518328082C520434653 @default.
- W1518328082 hasConceptScore W1518328082C542589376 @default.
- W1518328082 hasConceptScore W1518328082C544956773 @default.
- W1518328082 hasConceptScore W1518328082C57863236 @default.
- W1518328082 hasLocation W15183280821 @default.
- W1518328082 hasOpenAccess W1518328082 @default.
- W1518328082 hasPrimaryLocation W15183280821 @default.
- W1518328082 hasRelatedWork W150596878 @default.
- W1518328082 hasRelatedWork W1553487370 @default.
- W1518328082 hasRelatedWork W1581187226 @default.
- W1518328082 hasRelatedWork W1963513994 @default.
- W1518328082 hasRelatedWork W2041132854 @default.
- W1518328082 hasRelatedWork W2042516636 @default.
- W1518328082 hasRelatedWork W2060604675 @default.
- W1518328082 hasRelatedWork W2178088191 @default.
- W1518328082 hasRelatedWork W2241435867 @default.
- W1518328082 hasRelatedWork W2607591692 @default.
- W1518328082 hasRelatedWork W2709153800 @default.
- W1518328082 hasRelatedWork W2735490480 @default.
- W1518328082 hasRelatedWork W2791670311 @default.
- W1518328082 hasRelatedWork W2890186289 @default.
- W1518328082 hasRelatedWork W2897059865 @default.
- W1518328082 hasRelatedWork W2912117502 @default.
- W1518328082 hasRelatedWork W3148880930 @default.
- W1518328082 hasRelatedWork W37057070 @default.
- W1518328082 hasRelatedWork W613984988 @default.
- W1518328082 hasRelatedWork W1728642840 @default.
- W1518328082 isParatext "false" @default.
- W1518328082 isRetracted "false" @default.
- W1518328082 magId "1518328082" @default.
- W1518328082 workType "dissertation" @default.