Matches in SemOpenAlex for { <https://semopenalex.org/work/W1518883343> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W1518883343 endingPage "83" @default.
- W1518883343 startingPage "71" @default.
- W1518883343 abstract "Computed tomography (CT) is widely used in medicine for diagnostics or for image-guided therapies, and is also popular in industrial applications for nondestructive testing. CT conventionally requires a large number of projections to produce volumetric images of a scanned object, because the conventional image reconstruction algorithm is based on filtered-backprojection. This requirement may result in relatively high radiation dose to the patients in medical CT unless the radiation dose at each view angle is reduced, and can cause expensive scanning time and efforts in industrial CT applications. Sparse- view CT may provide a viable option to address both issues including high radiation dose and expensive scanning efforts. However, image reconstruction from sparsely sampled data in CT is in general very challenging, and much efforts have been made to develop algorithms for such an image reconstruction problem. Image total-variation minimization algorithm inspired by compressive sensing theory has recently been developed, which exploits the sparseness of the image derivative magnitude and can reconstruct images from sparse-view data to a similar quality of the images conventionally reconstructed from many views. In successive CT scans, prior CT image of an object and its projection data may be readily available, and the current CT image may have not much difference from the prior image. Considering the sparseness of such a difference image between the successive scans, image reconstruction of the difference image may be achieved from very sparsely sampled data. In this work, we showed that one can further reduce the number of projections, resulting in a super-sparse scan, for a good quality image reconstruction with the aid of a prior data. Both numerical and experimental results are provided." @default.
- W1518883343 created "2016-06-24" @default.
- W1518883343 creator A5050087440 @default.
- W1518883343 creator A5078643355 @default.
- W1518883343 creator A5085023021 @default.
- W1518883343 date "2013-01-01" @default.
- W1518883343 modified "2023-10-16" @default.
- W1518883343 title "Super-sparsely view-sampled cone-beam CT by incorporating prior data" @default.
- W1518883343 cites W1556473642 @default.
- W1518883343 cites W1597066629 @default.
- W1518883343 cites W1676212501 @default.
- W1518883343 cites W1839499479 @default.
- W1518883343 cites W1967293253 @default.
- W1518883343 cites W1968463005 @default.
- W1518883343 cites W1972150100 @default.
- W1518883343 cites W1977528233 @default.
- W1518883343 cites W1998358906 @default.
- W1518883343 cites W1999671618 @default.
- W1518883343 cites W2002107055 @default.
- W1518883343 cites W2014761154 @default.
- W1518883343 cites W2028560817 @default.
- W1518883343 cites W2042653706 @default.
- W1518883343 cites W2061033783 @default.
- W1518883343 cites W2062708669 @default.
- W1518883343 cites W2072824630 @default.
- W1518883343 cites W2074901261 @default.
- W1518883343 cites W2081634075 @default.
- W1518883343 cites W2091859845 @default.
- W1518883343 cites W2094428038 @default.
- W1518883343 cites W2096309518 @default.
- W1518883343 cites W2107370528 @default.
- W1518883343 cites W2129638195 @default.
- W1518883343 cites W2135850504 @default.
- W1518883343 cites W2138025351 @default.
- W1518883343 cites W2149400409 @default.
- W1518883343 cites W2149604609 @default.
- W1518883343 cites W2157812230 @default.
- W1518883343 cites W2159269332 @default.
- W1518883343 cites W2165565866 @default.
- W1518883343 cites W290896398 @default.
- W1518883343 doi "https://doi.org/10.3233/xst-130367" @default.
- W1518883343 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23507853" @default.
- W1518883343 hasPublicationYear "2013" @default.
- W1518883343 type Work @default.
- W1518883343 sameAs 1518883343 @default.
- W1518883343 citedByCount "14" @default.
- W1518883343 countsByYear W15188833432013 @default.
- W1518883343 countsByYear W15188833432014 @default.
- W1518883343 countsByYear W15188833432015 @default.
- W1518883343 countsByYear W15188833432016 @default.
- W1518883343 countsByYear W15188833432017 @default.
- W1518883343 countsByYear W15188833432019 @default.
- W1518883343 countsByYear W15188833432022 @default.
- W1518883343 countsByYear W15188833432023 @default.
- W1518883343 crossrefType "journal-article" @default.
- W1518883343 hasAuthorship W1518883343A5050087440 @default.
- W1518883343 hasAuthorship W1518883343A5078643355 @default.
- W1518883343 hasAuthorship W1518883343A5085023021 @default.
- W1518883343 hasConcept C11413529 @default.
- W1518883343 hasConcept C115961682 @default.
- W1518883343 hasConcept C124851039 @default.
- W1518883343 hasConcept C141379421 @default.
- W1518883343 hasConcept C154945302 @default.
- W1518883343 hasConcept C31601959 @default.
- W1518883343 hasConcept C31972630 @default.
- W1518883343 hasConcept C41008148 @default.
- W1518883343 hasConcept C55020928 @default.
- W1518883343 hasConcept C57493831 @default.
- W1518883343 hasConceptScore W1518883343C11413529 @default.
- W1518883343 hasConceptScore W1518883343C115961682 @default.
- W1518883343 hasConceptScore W1518883343C124851039 @default.
- W1518883343 hasConceptScore W1518883343C141379421 @default.
- W1518883343 hasConceptScore W1518883343C154945302 @default.
- W1518883343 hasConceptScore W1518883343C31601959 @default.
- W1518883343 hasConceptScore W1518883343C31972630 @default.
- W1518883343 hasConceptScore W1518883343C41008148 @default.
- W1518883343 hasConceptScore W1518883343C55020928 @default.
- W1518883343 hasConceptScore W1518883343C57493831 @default.
- W1518883343 hasIssue "1" @default.
- W1518883343 hasLocation W15188833431 @default.
- W1518883343 hasLocation W15188833432 @default.
- W1518883343 hasOpenAccess W1518883343 @default.
- W1518883343 hasPrimaryLocation W15188833431 @default.
- W1518883343 hasRelatedWork W1987556074 @default.
- W1518883343 hasRelatedWork W2003574393 @default.
- W1518883343 hasRelatedWork W2005185696 @default.
- W1518883343 hasRelatedWork W2034905155 @default.
- W1518883343 hasRelatedWork W2112932559 @default.
- W1518883343 hasRelatedWork W2574052219 @default.
- W1518883343 hasRelatedWork W2769426941 @default.
- W1518883343 hasRelatedWork W2806096627 @default.
- W1518883343 hasRelatedWork W3196786996 @default.
- W1518883343 hasRelatedWork W4225259759 @default.
- W1518883343 hasVolume "21" @default.
- W1518883343 isParatext "false" @default.
- W1518883343 isRetracted "false" @default.
- W1518883343 magId "1518883343" @default.
- W1518883343 workType "article" @default.