Matches in SemOpenAlex for { <https://semopenalex.org/work/W1519268540> ?p ?o ?g. }
- W1519268540 endingPage "362" @default.
- W1519268540 startingPage "347" @default.
- W1519268540 abstract "Outlier detection among over‐dispersed proportions is important in healthcare quality monitoring. We had previously introduced control limits for double‐square‐root chart on the basis of prediction intervals from regression‐through‐origin and compared our approach to common outlier detection tests. In this study, we develop our approach further by adjusting the confidence level (in the spirit of Chauvenet's criterion and Bayesian thinking) and transforming the chart into an asymmetric funnel plot. We compare it to Laney's approach ( p '‐chart adapted for cross‐sectional data), Spiegelhalter's approach (funnel plots based on multiplicative or additive regression models) and Carling's median rule. Comparisons are performed on simulated and real data. The simulations comprise ‘small’ (<0.2; highly right‐skewed) and ‘large’ (>0.5; symmetrically distributed) proportions, drawn in samples of size 10–100 from lognormal distribution either without outliers or with one outlier added. The real data comprise hospital readmissions from the UK (used by Laney and Spiegelhalter) and business indicators of healthcare quality for Slovenian hospitals. In the simulations, Spiegelhalter's approach tended to yield very high false alarm rates, except the multiplicative version in very small samples. Laney's approach produced fewest false alarms but could not detect the outlier in very small samples among small proportions, and regardless of sample size among large proportions. Median rule performed similarly. Our approach performed the best overall, although it is slightly less liberal than median rule for small proportions, it appears to be the only generally useful approach for large proportions. Copyright © 2013 John Wiley & Sons, Ltd." @default.
- W1519268540 created "2016-06-24" @default.
- W1519268540 creator A5017888558 @default.
- W1519268540 creator A5079200211 @default.
- W1519268540 date "2013-11-07" @default.
- W1519268540 modified "2023-09-25" @default.
- W1519268540 title "Outlier Detection for Healthcare Quality Monitoring - A Comparison of Four Approaches to Over-Dispersed Proportions" @default.
- W1519268540 cites W1486214003 @default.
- W1519268540 cites W1522862791 @default.
- W1519268540 cites W1978239142 @default.
- W1519268540 cites W1988100039 @default.
- W1519268540 cites W1989255492 @default.
- W1519268540 cites W1993932639 @default.
- W1519268540 cites W2001063175 @default.
- W1519268540 cites W2015666954 @default.
- W1519268540 cites W2024858072 @default.
- W1519268540 cites W2043734971 @default.
- W1519268540 cites W2045323821 @default.
- W1519268540 cites W2049020839 @default.
- W1519268540 cites W2061056614 @default.
- W1519268540 cites W2091690461 @default.
- W1519268540 cites W2096790930 @default.
- W1519268540 cites W2115195817 @default.
- W1519268540 cites W2118632666 @default.
- W1519268540 cites W2122891615 @default.
- W1519268540 cites W2126155065 @default.
- W1519268540 cites W2126832454 @default.
- W1519268540 cites W2128038346 @default.
- W1519268540 cites W2134857847 @default.
- W1519268540 cites W2144376492 @default.
- W1519268540 cites W2145493837 @default.
- W1519268540 cites W2148621962 @default.
- W1519268540 cites W2148714289 @default.
- W1519268540 cites W2171482962 @default.
- W1519268540 cites W2185343599 @default.
- W1519268540 cites W4213456951 @default.
- W1519268540 cites W4232552111 @default.
- W1519268540 cites W4240124461 @default.
- W1519268540 cites W4253212108 @default.
- W1519268540 cites W4292283308 @default.
- W1519268540 cites W51328766 @default.
- W1519268540 cites W57072600 @default.
- W1519268540 doi "https://doi.org/10.1002/qre.1581" @default.
- W1519268540 hasPublicationYear "2013" @default.
- W1519268540 type Work @default.
- W1519268540 sameAs 1519268540 @default.
- W1519268540 citedByCount "10" @default.
- W1519268540 countsByYear W15192685402015 @default.
- W1519268540 countsByYear W15192685402017 @default.
- W1519268540 countsByYear W15192685402019 @default.
- W1519268540 countsByYear W15192685402020 @default.
- W1519268540 countsByYear W15192685402021 @default.
- W1519268540 countsByYear W15192685402022 @default.
- W1519268540 countsByYear W15192685402023 @default.
- W1519268540 crossrefType "journal-article" @default.
- W1519268540 hasAuthorship W1519268540A5017888558 @default.
- W1519268540 hasAuthorship W1519268540A5079200211 @default.
- W1519268540 hasConcept C105795698 @default.
- W1519268540 hasConcept C107673813 @default.
- W1519268540 hasConcept C111919701 @default.
- W1519268540 hasConcept C124101348 @default.
- W1519268540 hasConcept C129848803 @default.
- W1519268540 hasConcept C134306372 @default.
- W1519268540 hasConcept C149782125 @default.
- W1519268540 hasConcept C166623804 @default.
- W1519268540 hasConcept C196985124 @default.
- W1519268540 hasConcept C2780439572 @default.
- W1519268540 hasConcept C33923547 @default.
- W1519268540 hasConcept C41008148 @default.
- W1519268540 hasConcept C42747912 @default.
- W1519268540 hasConcept C44249647 @default.
- W1519268540 hasConcept C739882 @default.
- W1519268540 hasConcept C79337645 @default.
- W1519268540 hasConcept C82605166 @default.
- W1519268540 hasConcept C83546350 @default.
- W1519268540 hasConcept C98045186 @default.
- W1519268540 hasConceptScore W1519268540C105795698 @default.
- W1519268540 hasConceptScore W1519268540C107673813 @default.
- W1519268540 hasConceptScore W1519268540C111919701 @default.
- W1519268540 hasConceptScore W1519268540C124101348 @default.
- W1519268540 hasConceptScore W1519268540C129848803 @default.
- W1519268540 hasConceptScore W1519268540C134306372 @default.
- W1519268540 hasConceptScore W1519268540C149782125 @default.
- W1519268540 hasConceptScore W1519268540C166623804 @default.
- W1519268540 hasConceptScore W1519268540C196985124 @default.
- W1519268540 hasConceptScore W1519268540C2780439572 @default.
- W1519268540 hasConceptScore W1519268540C33923547 @default.
- W1519268540 hasConceptScore W1519268540C41008148 @default.
- W1519268540 hasConceptScore W1519268540C42747912 @default.
- W1519268540 hasConceptScore W1519268540C44249647 @default.
- W1519268540 hasConceptScore W1519268540C739882 @default.
- W1519268540 hasConceptScore W1519268540C79337645 @default.
- W1519268540 hasConceptScore W1519268540C82605166 @default.
- W1519268540 hasConceptScore W1519268540C83546350 @default.
- W1519268540 hasConceptScore W1519268540C98045186 @default.
- W1519268540 hasIssue "3" @default.
- W1519268540 hasLocation W15192685401 @default.
- W1519268540 hasOpenAccess W1519268540 @default.